Skip to main content

#Databricks Data Analyst

Databricks Data Analyst leverages the power of Databricks to explore, visualize, and analyze large datasets efficiently. They use SQL, Python, and visualization tools to transform raw data into actionable insights, supporting business intelligence and decision-making. With Databricks’ unified platform, Data Analysts can collaborate seamlessly and deliver faster, data-driven results.

✅ SQL Analytics in Databricks
✅ Dataframes & PySpark Queries
✅ Delta Tables for Analytics
✅ BI Integration with Power BI
✅ Real-Time Data Insights
✅ Visualization in Databricks
✅ Security & Access Roles
✅ End-to-End Analytics Project
✅ Real Time Project
✅ 1:1 Mentorship, Resume

Module 1: SQL Server TSQL (MS SQL) Queries

Ch 1: Data Analyst Job Roles

  • Introduction to Data
  • Data Analyst Job Roles
  • Data Analyst Challenges
  • Data and Databases Intro

Ch 2: Database Intro & Installations

  • Database Types (OLTP, DWH, ..)
  • DBMS: Basics
  • SQL Server 2025 Installations
  • SSMS Tool Installation
  • Server Connections, Authentications

Ch 3: SQL Basics V1 (Commands)

  • Creating Databases (GUI)
  • Creating Tables, Columns (GUI)
  • SQL Basics (DDL, DML, etc..)
  • Creating Databases, Tables
  • Data Inserts (GUI, SQL)
  • Basic SELECT Queries

Ch 4: SQL Basics V2 (Commands, Operators)

  • DDL : Create, Alter, Drop, Add, modify, etc..
  • DML: Insert, Update, Delete, select into, etc..
  • DQL: Fetch, Insert… Select, etc..
  • SQL Operations: LIKE, BETWEEN, IN, etc..
  • Special Operators

Ch 5: Data Types

  • Integer Data Types
  • Character, MAX Data Types
  • Decimal & Money Data Types
  • Boolean & Binary Data Types
  • Date and Time Data Types
  • SQL_Variant Type, Variables

Ch 6: Excel Data Imports

  • Data Imports with Excel
  • SQL Native Client
  • Order By: Asc, Desc
  • Order By with WHERE
  • TOP & OFFSET
  • UNION, UNION ALL

Ch 7: Schemas & Batches

  • Schemas: Creation, Usage
  • Schemas & Table Grouping
  • Real-world Banking Database
    2 Part, 3 Part & 4 Part Naming
    Batch Concept & “Go” Command

Ch 8: Constraints, Keys & RDBMS – Level 1

  • Null, Not Null Constraints
  • Unique Key Constraint
  • Primary Key Constraint
  • Foreign Key & References
  • Default Constraint & Usage
  • DB Diagrams & ER Models

Ch 9: Normal Forms & RDBMS – Level 2

  • Normal Forms: 1 NF, 2 NF
  • 3 NF, BCNF and 4 NF
  • Adding PK to Tables
  • Adding FK to Tables
  • Cascading Keys
  • Self Referencing Keys
  • Database Diagrams

Ch 10: Joins & Queries

  • Joins: Table Comparisons
  • Inner Joins & Matching Data
  • Outer Joins: LEFT, RIGHT
  • Full Outer Joins & Aliases
  • Cross Join & Table Combination
  • Joining more than 2 tables

Ch 11: Views & RLS

  • Views: Realtime Usage
  • Storing SELECT in Views
  • DML, SELECT with Views
  • RLS: Row Level Security
  • WITH CHECK OPTION
  • Important System Views

Ch 12: Stored Procedures

  • Stored Procedures: Realtime Use
  • Parameters Concept with SPs
  • Procedures with SELECT
  • System Stored Procedures
  • Metadata Access with SPs
  • SP Recompilations
  • Stored Procedures, Tuning

Ch 13: User Defined Functions

  • Using Functions in MSSQL
  • Scalar Functions in Real-world
  • Inline & Multiline Functions
  • Parameterized Queries
  • Date & Time Functions
  • String Functions & Queries
  • Aggregated Functions & Usage

Ch 14: Triggers & Automations

  • Need for Triggers in Real-world
  • DDL & DML Triggers
  • For / After Triggers
  • Instead Of Triggers
  • Memory Tables with Triggers
  • Disabling DMLs & Triggers

Ch 15: Transactions & ACID

  • Transaction Concepts in OLTP
  • Auto Commit Transaction
  • Explicit Transactions
  • COMMIT, ROLLBACK
  • Checkpoint & Logging
  • Lock Hints & Query Blockin
  • READPAST, LOCKHINT

Ch 16: CTEs & Tuning

  • Common Table Expression
  • Creating and Using CTEs
  • CTEs, In-Memory Processing
  • Using CTEs for DML Operations
  • Using CTEs for Tuning
  • CTEs: Duplicate Row Deletion

Ch 17: Indexes Basics, Tuning

  • Indexes & Tuning
  • Clustered Index, Primary Key
  • Non Clustered Index & Unique
  • Creating Indexes Manually
  • Composite Keys, Query Optimizer
  • Composite Indexes & Usage

Ch 18: Group By Queries

  • Group By, Distinct Keywords
  • GROUP BY, HAVING
  • Cube( ) and Rollup( )
  • Sub Totals & Grand Totals
  • Grouping( ) & Usage
  • Group By with UNION
  • Group By with UNION ALL

Ch 19: Joins with Group By

  • Joins with Group By
  • 3 Table, 4 Table Joins
  • Join Queries with Aliases
  • Join Queries & WHERE
  • Join Queries & Group By
  • Joins with Sub Queries
  • Query Execution Order

Ch 20: Sub Queries

  • Sub Queries Concept
  • Sub Queries & Aggregations
  • Joins with Sub Queries
  • Sub Queries with Aliases
  • Sub Queries, Joins, Where
  • Correlated Queries

Ch 21: Cursors & Fetch

  • Cursors: Realtime Usage
  • Local & Global Cursors
  • Scroll & Forward Only Cursors
  • Static & Dynamic Cursors
  • Fetch, Absolute Cursors

Ch 22: Window Functions, CASE

  • IIF Function and Usage
  • CASE Statement Usage
  • Window Functions (Rank)
  • Row_Number( )
  • Rank( ), DenseRank( )
  • Partition By & Order By

Ch 23: Merge(Upsert) & CASE, IIF

  • Merge Statement
  • Upsert Operations with Merge
  • Matched and Not Matched
  • IIF & CASE Statements
  • Merge Statement inside SPs
  • Merge with OLTP & DWH

Ch 24: Key Take-Aways from Module 1

  • Case Study 1: Medicare: Tasks, Solutions
  • Case Study 2: ECommerce: Task, Solutions
  • Chapter Wise Assignments: Solutions
  • Dailly Assignments: Review (Feedback)
  • Weekly Mock Interview: Feedbacks

Module 2: Python Concepts

Ch 1: Python in Data Analyst 

  • Database Types
  • Role of Python in Analysis
  • Databricks & Data Analyst with Python

Ch 2: Python Introduction

  • Python Introduction
  • Python Versions
  • Python Implementations
  • Python Installations
  • Python IDE & Usage
  • Jupyter Notebooks

Ch 3: Python Operations

  • Basic Operations in Python
  • Python Scripts, Print()
  • Single, Multiline Statements
  • Python: Internal Architecture
  • Compiler Versus Interpreter

Ch 4: Data Types & Variables

  • Integer / Int Data Types
  • Float, String Data Types
  • Sequence Types: List, Tuple
  • Range, Complex & memview
  • Retrieving Data Type: type()

Ch 5: Python Operators

  • Arithmetic, Assignment Ops
  • Comparison Operators
  • Operator Precedence
  • If … Else Statement, Pass
  • Short Hand If, OR, AND
  • ELIF and ELSE IF Statements

Ch 6: Python Loops, Iterations

  • Python Loop & Realtime Use
  • Python While Loop Statement
  • Break and Continue Statement
  • Iterations & Conditions
  • Exit Conditions & For Loops
  • iter() and Looping Options

Ch 7: Python Functions

  • Python Functions & Usage
  • Function Parameters
  • Default & List Parameters
  • Python Lambda Functions
  • Recursive Functions, Usage
  • Return & Print @ Lamdba

Ch 8: Python Modules

  • Import Python Modules
  • Built In Modules & dir
  • datetime module in Python
  • Date Objections Creation
  • strftime Method & Usage
  • imports & datetime.now()

Ch 9: Python User Inputs & TRY

  • Try Except, Exception Handling
  • Raise an exception method
  • TypeError, Scripting in Python
  • Python User Inputs
  • Python Index Numbers
  • input() & raw_input()

Ch 10: Python File Handling

  • File Handling, Activities
  • Loop, Write, Close Files
  • Appending, Overwriting
  • import os, path.exists
  • f.open, f.write
  • f.read, f.close

Ch 11: Pandas DataFrames 1

  • Installation of Pandas
  • Python Modules & Pandas
  • Pandas Codebase & Usage
  • import pandas.DataFrame
  • Pandas Series, arrays

Ch 12: Pandas DataFrames 2

  • Indexes & Named Options
  • Locate Row and Load Rows
  • Row Index & Index Lists
  • Load Files Into a DataFrame
  • df.to_string() Function
  • tail() & null() Function

Ch 13: Pandas Transformations

  • Pandas – Cleaning Data
  • Replace, Transform Columns
  • Data Discovery & Column Fill
  • Identify & Remove Duplicates
  • dropna(), fillna() Functions
  • Data Plotting & matlib Lib

Ch 14: Key Take-Aways from Module 2

  • Case Study @ ECommerce: Task, Solutions
  • Chapter Wise Assignments: Solutions
  • Dailly Assignments: Review (Feedback)
  • Weekly Mock Interview: Feedbacks

Module 3: Databricks

Ch 1: Databricks Intro

  • Big Data
  • Open Source ETL
  • What is a Data Lakehouse?
  • Hadoop, MapReduce and Apache Spark

Ch 2: Databricks Architecture

  • Unity Catalog Volume
  • Clusters…
  • Apache Spark and Databricks
  • Apache Spark Ecosystem
  • Compute Activities

Ch 3: Databricks Workspace

  • Workspace Objects
  • Databricks Notebooks
  • Databricks Managed Resources
  • Databricks Workspace UI
  • UI Updates

Ch 4: Databricks Notebooks

  • Databricks Notebooks
  • Mix Languages in Notebooks
  • Comments and Markdown Text to Databricks Notebooks
  • Organizing your Workspace Objects
  • SparkSQL Notebooks

Ch 5: SparkSQL Notebooks – 1

  • Spark SQL API
  • Creating a Catalog, Schema
  • Adding New Columns
  • Changing Data Types
  • Removing Columns
  • Union

Ch 6: SparkSQL Notebooks – 2

  • Math Functions
  • Sort Functions
  • String Functions
  • Datetime Functions
  • Conditional Statements
  • SQL Expressions with expr()

Ch 7: SparkSQL Notebooks – 3

  • Volume for our Data Assets
  • Uploading the Countries Data Files
  • File Formats, Schema Inference
  • How to Partition your Data
  • Databricks File System Utilities
  • Creating Views with SQL
  • Creating Catalogs, Schemas and Volumes with SQL

Ch 8: PySpark – 1

  • Dataframes
  • Creation of Dataframes
  • Pandas Dataframes
  • Dataframe()
  • List Values, Mixed Values
  • spark.read.csv()
  • spark.read.format()
  • Filtering DataFrames
  • Grouping your DataFrame
  • Pivot your DataFrame

Ch 9: PySpark – 2

  • DataFrameReader
  • DataFrameWriter Methods
  • CSV Data into a DataFrame
  • Reading Single Files
  • Reading Multiple Files
  • Schema with an SQL String
  • Schema Programmatically

Ch 10: PySpark – 3

  • Writing DataFrames to CSV
  • Working with JSON
  • Working with ORC
  • Working with Parquet
  • Working with Delta Lake
  • Rendering your DataFrame
  • Creating DataFrames from Python Data Structures

Ch 11: Unity Catalog (Dev)

  • Unity Catalog Managed Tables
  • SQL Queries with the PySpark API
  • Managed Tables with SQL
  • Creating Views with SQL
  • Creating Catalogs, Schemas and Volumes with SQL
  • Dropping Unity Catalog Objects with SQL
  • Temporary Views
  • External Tables, External Volumes

Ch 12: Unity Catalog (Admin)

  • Metastore and the Unity Catalog Object Model
  • Databricks Account Console
  • Data Discovery and Lineage
  • System Tables
  • Databricks Account and Workspace Roles
  • Unity Catalog Privileges and Securable Objects
  • Workspace Access Control Lists (ACLs)
  • Workspace-Catalog Binding
  • Workspace Compute Policies

Ch 13: PySpark Transformations – 1

  • Data Preparation
  • Selecting Columns
  • Column Transformations
  • Renaming Columns
  • Changing Data Types
  • select() and selectExpr()
  • Column Transformations
  • withColumn()

Ch 14: PySpark Transformations – 2

  • Basic Arithmetic and Math Functions
  • String Functions
  • Datetime Conversions
  • Date and Time Functions
  • Joining DataFrames
  • Unioning DataFrames
  • Joining DataFrames

Ch 15: PySpark Transformations – 3

  • Filtering DataFrame Records
  • Removing Duplicate Records
  • Sorting and Limiting Records
  • Filtering Null Values
  • Grouping and Aggregating
  • Pivoting and Unpivoting
  • Conditional Expressions

Ch 16: Medallion Architecture

  • Medallion Architecture
  • Aggregated Data Loads
  • Broze, Silver and Gold
  • Temp Views
  • Spark Tables (Parquet)
  • Work with File, Table Sources

Ch 17: Delta Lake – 1

  • Storage Layer
  • Delta Table API
  • Deleting Records
  • Updating Records
  • Merging Records
  • History and Time Travel

Ch 18: Delta Lake – 2 (SCD)

  • Schema Evolution
  • Delta Lake Data Files
  • Deleting and Updating Records
  • Merge Into
  • Table Utility Commands
  • Exploratory Data Analysis

Ch 19: Implementation of SCD Type 2

  • Incremental Loads
  • Upserts Versus SCD
  • Ne Row Inserts
  • Existing Row Updates
  • Old History Retention
  • Delta Transaction Log

Ch 20: Widgets

  • Text Widgets
  • User Parameters
  • Manual Executions
  • Lake Bridge
  • Databricks BridgeOne

Ch 21: Lake Flow Jobs

  • Worksflows & CRON
  • Job Compute, Running Tasks
  • Python Script Tasks
  • Parameters into Notebook Tasks
  • Parameters into Python Script Tasks
  • Concurrent Executions, Dependencies
  • Branching Control with the If-Else Task

Ch 22: Databricks Tuning

  • How Spark Optimizes your Code
  • Lazy Evaluation
  • Explain Plan
  • Inspecting Query Performance
  • Caching, Data Shuffling
  • Broadcast Joins
  • When to Partition
  • Data Skipping
  • Z Ordering
  • Liquid Clustering
  • Spark Configurations

Ch 23: Version Control & GitHub

  • Local Development
  • Runtime Compatibility
  • Git and GitHub Pre-requisites
  • Git and GitHub Basics
  • Linking GitHub and Databricks
  • Databricks Git Folders
  • Project Code to GitHub
  • Adding Modules to the Project Code
  • Databricks Job Updates, Runs

Ch 24: Spark Structured Streaming

  • Streaming Simulator Notebook
  • Micro-batch Size
  • Schema Inference and Evolution
  • Time Based Aggregations and Watermarking
  • Writing Streams
  • Trigger Intervals
  • Delta Table Streaming Reads and Writes

Ch 25: Auto Loader

  • Reading Streams with Auto Loader
  • Reading a Data Stream
  • Manually Cancel your Data Streams
  • Writing to a Data Stream
  • Workspace Modules

Ch 26: Lake Flow Declarative Pipelines

  • Delta LIVE Tables
  • Data Generator Notebook
  • Pipeline Clusters
  • Databricks CLI
  • Data Quality Checks
  • Streaming Dataset “Simulator”
  • Streaming Live Tables

Ch 27: Security: ACLs

  • Overview of ACLs
  • Adding a New User to our Workspace
  • Workspace Access Control
  • Cluster Access Control
  • Groups

Ch 28: Realtime Project @ Ecommerce / Banking / Sales

  • Detailed Project Requirements
  • Project Solutions
  • Project FAQs
  • Project Flow
  • Interview Questions & Answers
  • Resume Guidance (1:1)

Ch 29: Key Take-Aways from Module 3

👉 Realtime Project: Requirement, CI CD, Solution, FAQs
👉 Chapter Wise Assignments: Solutions
👉 Dailly Assignments: Review (Feedback)
👉 Weekly Mock Interview: Feedback

Module 4: Power BI with AI

Ch 1: Power BI Intro, Installation

  • Power BI & Data Analysis
  • 5 Design Tools, 3 Techniques
  • 2 Hosting Solutions
  • Power BI with Co-Pilot & AI
  • Power BI Installation

Ch 2: Report Design Concepts

  • Basic Report Design (PBIX)
  • Get Data, Canvas (Design)
  • Data View, Data Models
  • Data Points, Spotlight
  • Focus Mode, PDF Exports

Ch 3: Visual Interactions, PBIT

  • Visual Interactions & Edits
  • Limitations with Visual Edits
  • Creating Power BI Templates
  • CSV Exports & PBIT Imports

Ch 4: Grouping, Hierarchies

  • Creating Groups : Lists
  • Creating Groups: Bins
  • List Items & Group Edits
  • Bin Size & Bin Count

Ch 5: Slicer & Visual Sync

  • Slicer Visual in Power BI
  • Slicer: Format Options
  • Single Select, Multi Select
  • Slicer: Select All On / Off
  • Visual Sync with Slicers

Ch 6: Hierarchies & Drill-Down

  • Hierarchies: Creation, Use
  • Hierarchies: Advantages
  • Drill Up, Drill Down
  • Conditional Drill Down
  • Filtered Drill Down, Table View

Ch 7: Filters & Drill Thru

  • Power BI Filters
  • Basic, Top & Advanced
  • Visual Filters, Page Filters
  • Report Level Filters, Clear Filter
  • Drill Thru Filters & Usage

Ch 8: Bookmarks, Buttons

  • Power BI Bookmarks
  • Images: Actions, Bookmarks
  • Buttons: Actions, Bookmarks
  • Page to Page NavigationsScore Cards, Master Pages

Ch 9: SQL DB Access & Big Data

  • SQL DB Access, Queries
  • Storage Modes: Direct Query
  • Formatting & Date Time
  • Storage Modes in Power BI
  • Azure (Big Data) Access & Formatting

Ch 10: Power BI Visualizations

  • Charts, Bars, Lines, Area
  • TreeMaps & HeatMaps
  • Funnel, Card, Multrow Card
  • PieCharts & Waterfall
  • Scatter Chart, Play Axis
  • Infographics, Classifications

Ch 11: Power Query Introduction

  • Power Query (Mashup)
  • ETL Transformations in PBI
  • Power Query Expressions
  • Table Combine Options
  • Merge, Union All Options
  • Close, Apply & Visualize

Ch 12: Power Query : Table Tfns

  • Table Duplicate, Header Promotion
  • Group By Transformation
  • Aggregate, Pivot Operation
  • Reverse Rows, Count Rows
  • Advanced Power Query Mode

Ch 13: Power Query: Column Tfn

  • Any Column Transformations
  • Data Type Detection, Change
  • Rename, Replace, Move
  • Fill Up, Fil Down
  • Step Edits & Rollbacks

Ch 14: Power Query: Text, Date

  • String / Text Transformations
  • Split, Merge, Extract, Format
  • Numeric and Date Time
  • Add Column & Expressions
  • Expressions and New Columns
  • Column From Examples

Ch 15: Power Query: Parameters

  • Parameters in Power Query
  • Static Parameters, Defaults
  • Dynamic Dropdowns, Lists
  • Linking with Table Queries
  • Step Edits, Type Conversions

Ch 16: Power BI Cloud: Publish

  • Power BI Cloud Concepts
  • Workspace Creation, Usage
  • Report Publish Cloud
  • Report Edits in Cloud
  • Semantic Models & Usage

Ch 17: Power BI Cloud Dashboards

  • Power BI Dashboards
  • Dashboard Creation, Usage
  • Pin Visuals, Pin LIVE Pages
  • Add Image, Video Tiles
  • Q&A & Pin Tiles

Ch 18: Power BI Cloud Operations

  • Report Shares, Alerts
  • Subscriptions, Exploration
  • Downloads & Edits
  • Report Cloning in Cloud
  • QR Codes, Web Publish
  • Lineage & Metrics

Ch 19: Power BI Cloud Gateways

  • Data Gateways, Data Refresh
  • Install, Configure Gateways
  • Data Sources Configurations
  • Data Refresh & Scheduling
  • Gateway Optimizations

Ch 20: Power BI Cloud Apps

  • Power BI Apps: Creation
  • App Sections & Content
  • Audience Options
  • App Security & Sharing
  • App Updates, Favourites
  • App URL, End User Access

Ch 21: Power BI Report Server

  • SQL Server 2025 (Mandatory Installations)
  • Power BI Report Server
  • Report Server Vs Cloud
  • Installation, Configuration
  • RS Config Tool Options
  • Report Database, TempDB
  • Web Service & Server URL

Ch 22: Paginated Reports

  • Report Builder Tool
  • Paginated Report (RDL)
  • Report Expressions (RDL)
  • Tablix, Chart Wizards
  • Fields & Drill-Down
  • RDL Report Publish

Ch 23: DAX Concepts (Basics)

  • DAX Concepts: Intro & Realtime Need
  • DAX Columns: Creation, Use
  • DAX Measures: Creation, Use
  • DAX Functions: IIF, ISBLANK
  • SUM, CALCULATE Functions
  • DAX Cheat Sheet

Ch 24: DAX Quick Measures

  • Quick Measures in Power BI
  • Average & Filters
  • Running Totals
  • Star Rating Calculations
  • DAX Measures in Data View
  • DAX in Visuals
  • DAX in Cloud Reports

Ch 25: Data Modelling, DAX

  • Dimensions Tables
  • Fact Tables & DAX Measures
  • Data Models & Relations
  • DAX Expressions
  • Star & Snowflake Schemas
  • DAX Joins & Expressions

Ch 26: DAX Joins, Variables

  • CALCULATEX & Variables
  • COUNT, COUNTA, etc..
  • SUM, SUMX, etc..
  • SELECTED MEMEBER
  • Filter Context, RETRUN
  • Dynamic Report with DAX

Ch 27: DAX Time Intelligence

  • Need for Time Intelligence
  • Date Table Generation
  • Time Intelligence with DAX
  • PARALLELPERIOD, DATE
  • CALENDAR, Total Functions
  • YTD, QTD, MTD with DAX

Ch 28: DAX – Row Level Security

  • RLS: Row Level Security
  • Data Modelling & Roles
  • Verify Roles (Testing)
  • Add Cloud Users to Roles
  • Dynamic Row Level Security
  • Testing RLS in Power BI

Ch 29: Analytical Reports

  • Analytical Report Concepts
  • Excel Data Analytics
  • Excel with Power BI Cloud
  • SQL, AVRO, JSON Sources
  • Analyse in Excel (Cloud)
  • Excel Reports to Cloud

Ch 30: PL 300 Exam Guidance, CoPilot

  • PL 300 Exam (Microsoft Certified Data Analyst) Guidance
  • PL 300 Exam Mocks
  • AI Components in Power BI
  • CoPilot Practical Uses
  • CoPilot with Desktop
  • CoPilot with Cloud
  • Need for AI Analytics (Fabric)

Ch 31: Key Take-Aways from Module 2

  • Case Study 1: Medicare: Tasks, Solutions
  • Case Study 2: ECommerce: Task, Solutions
  • Chapter Wise Assignments: Solutions
  • Dailly Assignments: Review (Feedback)
  • Weekly Mock Interview: Feedbacks

Fabric Data Analyst Training FAQ's

What is Fabric Data Analyst Job Role?

A Fabric Data Analyst is responsible for designing, building, and delivering data analytics solutions using Microsoft Fabric. The role involves working with lakehouses, warehouses, dataflows, pipelines, and Power BI to ingest, model, and visualize data. Fabric Data Analysts turn raw enterprise data into actionable business insights through modern analytics solutions that are secure, scalable, and governed.

What are the Job Roles of a Fabric Data Analyst?

💼 Top Job Roles:

1️⃣ Ingest and transform data using Fabric Data Pipelines and Dataflows
2️⃣ Build Lakehouse and Warehouse data models for analytics
3️⃣ Develop semantic models for enterprise reporting
4️⃣ Design and publish interactive dashboards using Power BI
5️⃣ Apply data security, governance, and compliance in analytics solutions
6️⃣ Collaborate with engineers, architects, and business users and more..!

What does our Fabric Data Analyst Training course contains?

The course is carefully curated with below module:
👉🏻Module 1: Microsoft SQL (TSQL)
👉🏻Module 2: Power BI

Who can join this course?

  •  Freshers starting a career in modern data analytics
  • Power BI professionals expanding into Fabric analytics
  • ETL/SQL developers moving to Fabric-based analytics solutions
  • Data analysts wanting Fabric enterprise skills
  • Anyone passionate about building cloud-first analytics solutions

No prior coding experience is required. All concepts are taught from scratch

What training modes are available?

Option 1:        LIVE Online Training  (100% Interactive, step by step, assignments)

Option 2:        Self Paced Videos (100% practical, step by step with concept wise assignments)

You may choose any one of these options, same curriculum!

I (Trainer) shall be available for doubts and clarifications, assignment check and review.

Why should I choose SQL School for Fabric Data Analyst training?

👉🏻 Every session is Practical, Step by Step with Concept wise FAQs !!

👉🏻 100% results with on-time practice.  Daily Tasks for every session.

👉🏻 Concept wise tasks be submitted before next class for Job Waiters / Starters.

👉🏻 Concept wise tasks due for submission by Weekends for Working Professionals.

Training Modes

LIVE Online Training

Instructor Led

Self Paced Videos

 On-Demand

Corporate Training

With 100% Hands-On

Placement Partners

Databricks Data Analyst Certificate

SQL SCHOOL

24x7 LIVE Online Server (Lab) with Real-time Databases.
Course includes ONE Real-time Project.

Why Choose SQL School

  • 100% Real-Time and Practical
  • ISO 9001:2008 Certified
  • Weekly Mock Interviews
  • 24/7 LIVE Server Access
  • Realtime Project FAQs
  • Course Completion Certificate
  • Placement Assistance
  • Job Support