Skip to main content

#Python

Python is a versatile, beginner-friendly language used in software development, data analysis, AI, automation, and web apps. With powerful libraries like Pandas, Django, and TensorFlow, plus strong community support, mastering Python opens career opportunities in data science, AI, and full-stack development.

✅ Python Funda, PVM, Data Types
✅ Advanced Data Analytics with Python
✅ Pandas, NumPy for Data Wrangling
✅ API Integration & Data Automation
✅ Python for Data Visualization ()
✅ Matplotlib, Seaborn, Plotly
✅ Python Programming, Expressions
✅ Machine Learning with Python
✅ AI Integrations, ML Ops
✅ 1:1 Mentorship, Interview Guidance

Python AI-ML Training
Course Contents:

Module 1 : Python Analytics

Ch 1. Python Introduction

  • Need for Data Analytics
  • Python in Data Analysis
  • History of Python
  • Python Versions
  • Python Implementations
  • Python Installations
  • Python IDE & Usage
  • Jupyter Notebooks

Ch 2. Python Basics, Architecture

  • Python Scripting Options
  • Basic Operations in Python
  • Python Scripts, Print()
  • Single, Multiline Statements
  • Adding Cells, Saving Notebook
  • Single, Multi Line Comments
  • Python : Internal Architecture
  • Compiler Versus Interpreter

Ch 3. Data Types & Variables

  • Integer / Int Data Types
  • Float & String Data Types
  • Boolean, Binary Types
  • Sequence Types: List, Tuple
  • Range, Complex & memview
  • Retrieving Data Type: type()
  • Multi Assignments & Casting
  • Unpack Collection, Outputs

Ch 4. Python Operators

  • Arithmetic, Assignment Ops
  • Comparison Operators
  • Logical, Identity Operators
  • Member, Bitwise Operators
  • Operator Precedence
  • If … Else Statement, Pass
  • Short Hand If, OR, AND
  • ELIF and ELSE IF Statements
  • Expressions, Ternary OPs

Ch 5: Python Loops, Iterations

  • Python Loop & Realtime Use
  • Python While Loop Statement
  • Break and Continue Statement
  • Using Print with While()
  • Iterations & Conditions
  • Exit Conditions & For Loops
  • Break, Continue & Range
  • __iter__() and __next__()
  • iter() and Looping Options

Ch 6: Python Collections

  • Python Collections (Arrays)
  • list() Constructor, print()
  • Python Tuples, Tuple Items
  • tuple() Constructor, Usage
  • Python Sets : Syntax Rules
  • Duplicates, Types, Ordered
  • Python Dictionaries: Usage
  • Changeable, Ordered Data
  • Dictionary Construct, type()

Ch 7: Python Functions

  • Python Functions & Usage
  • Function Parameters
  • Arguments, **kwargs
  • Default & List Parameters
  • Python Lambda Functions
  • Anonymous Functions
  • Recursive Functions, Usage
  • Return & Print @ Lamdba

Ch 8: Python Classes & Arrays

  • Python Classes & Objects
  • __init__() Function
  • __str__() Function
  • Self Parameters & Objects
  • Python Inheritance & Classes
  • Parent & Child Classes
  • __init__() & super() Function
  • Polymorphism in Python

Ch 9: Python Modules

  • import Python Modules
  • Variables in Modules
  • Built In Modules & dir
  • datetime module in Python
  • Date Objections Creation
  • strftime Method & Usage
  • imports & datetime.now()
  • Using Python Constructors

Ch 10: : Python JSON & RegEx

  • JSON Concepts, Usage
  • Dictionary & import json
  • Python Objects into JSON
  • Formatting & Ordering
  • json.dumps, print options
  • Python Regular Expressions
  • RegEx Module & Function
  •  search() & span() , Strings
  • Using RegEx with JSON

Ch 11: Python User Inputs & TRY

  • Try Except, Exception Handling
  • NameError Resolution
  • Python Finally Block, Usage
  • Raise an exception method
  • TypeError, Scripting in Python
  • Python User Inputs
  • Python Index Numbers
  • Named Indexes, Usage
  • input() & raw_input()

Ch 12: Python File Handling

  • File Handling, Activities
  • r, a, w, x modes
  • t, b Operations
  • Read Only Parts
  • Loop, Write, Close Files
  • Appending, Overwriting
  • import os, path.exists
  • f.open, f.write
  • f.read, f.close

Ch 13: Data Analytics – Pandas

  • Python Modules & Pandas
  • Pandas Codebase & Usage
  • Installation of Pandas
  • import pandas.DataFrame
  • Checking Pandas Version
  • Pandas Series, arrays
  • Labels : Creation, Use
  • series(), print()

Ch 14: Data Analytics – DataFrames

  • Indexes & Named Options
  • Locate Row and Load Rows
  • Row Index & Index Lists
  • Load Files Into a DataFrame
  • pd.read_csv() Function
  • pd.options.display.max_rows
  • df.to_string() Function
  • tail() & null() Function

Ch 15: Data Analytics – Pandas

  • Pandas – Cleaning Data
  • Replace, Transform Columns
  • Data Discovery & Column Fill
  • Identify & Remove Duplicates
  • dropna(), fillna() Functions
  • Pandas – Data Correlations
  • Good & Bad Correlation
  • Data Plotting & matlib Lib

Ch 16: : SQL DB & Python – 1

  • SQL & Databases
  • Azure Data Studio Tool
  • sp_execute_external_script
  • Input Data & Result Sets
  • DDL & DML with Python
  • SQL_out, SQL_in
  • Variables & Parameters
  • Versions, Package List
  • WITH RESULT SETS Options

Ch 17: SQL & Python – 2

  • pandas.Series with SQL DBs
  • Indexing Methods in Realtime
  • Convert series to data frame
  • Output values into data.frame
  • pymssql package in SQL Server
  • pip list & Package Manager
  • Python runtime, Py Package
  • pymssql.connect & Usage
  • Cursor Variables & Usage

Ch 18: Realtime Case Study

Module 2 : Python Programming

Ch 1. Python Dictionary

  • Dictionary Creation, Use
  • Hashing, Copy, Update
  • Deletion, Sorting
  • Len(), Inbuilt Functions
  • Variable Types – python List
  • Cmp() List Method
  • Python Dictionary Str(dict)
  • Programming Concepts
  • Loops and Sets
  • Realtime Usage

Ch 2. Python Packages

  • Package in Python
  • Creating a package
  • Package Imports, Modules
  • Sub Packages Creation
  • Sub Package Imports
  • Popular Packages in Python
  • NumPy & SciPy
  • Libraries in Python
  • Python Seaborn
  • Python framework

Ch 3. Exception Handling

  • Shell Script Commands
  • OS operations in Python
  • File System Shell Methods
  • os – math – cmd -csv – random
  • Numpy ( numerical python )
  • Pandas – sys – Matplotlib;
  • Common RunTime Errors
  • Python Custom Exception;
  • Exception Handling
  • Try…Except…else,Try…finally

Ch 4: Python Class & Objects

  • Class variables, Instances
  • Built in Class Attributes
  • Objects – Constructors
  • Modifiers – Self Variable
  • Python Garbage Collections
  • Hierarchical Inheritance
  • Multilevel, Multiple, Hybrid
  • Overloading & OverRiding
  • Polymorphism – Abstraction

Ch 5: Regular Expressions

  • Regular Expression
  • Regular Expression Patterns
  • Literals – Repetition Cases
  • Groups andGrouping
  • w+ and ^ , s Expressions
  • re.split function
  • Regular expression methods
  • re.match() in Regular Expr
  • re.search(), re.findall for Text

Ch 6: Multi-Threading

  • Python Multi-Threading
  • Thread Synchronization
  • Multiprocessing
  • Python Gil & Programming
  • Thread Control Block (TCB)
  • Stack Pointers & App Usage
  • Program Counters in Realtim
  •  Thread State Concept
  • Python Exception Handling

Ch 7: Python TKinter

  • Tkinter GUI Program
  • Components & Events
  • Adding Controls inTkinter
  • Entry, Text Widgets
  • Radio & Check Buttons
  • Tkinter Forms in Realtime
  • List Boxes, Menu, ComboBox
  • Mainloop () & Functions

Ch 8: Python Web & IoT Intro

  • Python Web Frameworks
  • Django : Advantages
  • Web Framework
  • MVC and MVT – Django
  • Web Pages using python
  • HTML5, CSS3 usage
  • PYTHON Bottle & Pyramid
  • Falcon ; smart_open in python

Ch 15: Data Analytics – Pandas

  • Pandas – Cleaning Data
  • Replace, Transform Columns
  • Data Discovery & Column Fill
  • Identify & Remove Duplicates
  • dropna(), fillna() Functions
  • Pandas – Data Correlations
  • Good & Bad Correlation
  • Data Plotting & matlib Lib

Module 3 : Python AI - ML

Ch 1. Machine Learning Basics

  • Machine Learning Funda
  • Python ML in Realtime
  • Pandas Extension in ML
  • Machine Learning Ops
  • Business to Data Conversions
  • ML Algorithms in Realtime

Ch 2. Python ML Concepts

  • Machine Learning (ML) Intro
  • Supervised, Unsupervised
  • Scikit-Learn Library
  • Python Libraries for ML
  • sklearn : Advantages & Uses
  • sklearn : Functions, Use

Ch 3. Python Data Handling

  • Data structures
  • Lists, Tuples, Sets
  • Dictionaries,
  • Pandas Data Operations
  • Data Visualizations
  • Matplotlib & Seaborn

Ch 4. AI With Python Intro

  • Artificial Intelligence
  • Applications of AI
  • AI Applicative Uses
  • AI Usage with Python
  • AI – Python Environment
  • Python Libraries
  • AI with Python in Realtime

Ch 5: Supervised Learning

  • Linear & Logistic Regression
  • Decision Trees
  • Random Forests
  • Support Vector Machines
  • Neural Networks Basics
  • Linear Regression Steps
  • Linear Regression in AI-ML

Ch 6: Unsupervised Learning – 1

  • Clustering & K-means
  • DBSCAN & Realtime Usage
  • Dimensionality Reduction
  • K clustering hierarchical
  • DBScan : Realtime Uses
  • KMeans clustering Vs DBSCAN?
  • PCA Vs t-SNE

Ch 7: Unsupervised Learning 2

  • Unsupervised Learning
  • Concepts and Scope
  • Realtime Usage
  • Dimensionality Reduction
  • Component Analysis (PCA)
  • PCA: Concept & Usage

Ch 8: Generalized Models

  • GLM Concept in Python
  • GLM in Regression
  • Considerations for GLM
  • Problem Solving Skills
  • Python Libraries
  • Python Extensions: GLM

Ch 9: Python Tree Models

  • Decision Tree Models
  • Decision Tree Working
  • Model Works, Algorithms
  • Random Forest Concept
  • Random Forest Tree
  • Random Forest Vs Knn

Ch 10: Big Data and ML

  • Spark and Big Data
  • Big Data with Python
  • Spark with Python
  • Spark with Big Data
  • Spark Algorithms
  • AI ML Libraries

Ch 11: Natural Lang” Processing

  • NLP : Purpose, Usage
  • NLP Applicative Uses
  • NLP Vs Machine Learning
  • NLP in Machine Learning
  • Using NLP in AI – ML
  • NLP code in Python?

Ch 12: AI in Real-World

  • AI in Chatbots
  • AI in Virtual Assistants
  • AI Ethical Considerations
  • AI Deployments (Flask)
  • AI with FastAPI
  • AI with Streamlit

SQL SCHOOL

24x7 LIVE Online Server (Lab) with Real-time Databases.
Course includes ONE Real-time Project.

Python AI - ML Training FAQs

What is Python AI - ML Job Role?

A Python AI–ML Engineer builds intelligent systems and machine learning models using Python. They work with data, train algorithms, and develop solutions like predictions, recommendations, and automation.

Key Tasks:

  • Clean and prepare data for model training

  • Build ML models using libraries like Scikit-learn, TensorFlow, or PyTorch

  • Train, test, and optimize AI/ML models

  • Deploy models into real-time applications

  • Work on AI tasks like NLP, computer vision, or chatbots

What are the Job Roles of an Python AI - ML?

  1. Machine Learning Engineer
  2. AI Engineer
  3. Data Scientist
  4. NLP Engineer
  5. Computer Vision Engineer and more..!

What does our Python AI-ML Training course contains?

The course is carefully curated with below module:
👉🏻Module 1: Python Analyst
👉🏻Module 2: Python Programmer
👉🏻Module 2: Python AI-ML

Who can join this course?

  • Freshers looking to start a career in data or analytics

  • Working professionals wanting to shift to Python, Data Science, or ETL roles

  • Students from any background interested in tech and data

  • IT and Non-IT professionals aiming to upskill

  • Anyone with basic computer knowledge and a passion for learning

No prior coding experience is required. All concepts are taught from scratch

What training modes are available?

Option 1:        LIVE Online Training  (100% Interactive, step by step, assignments)

Option 2:        Self Paced Videos (100% practical, step by step with concept wise assignments)

You may choose any one of these options, same curriculum!

I (Trainer) shall be available for doubts and clarifications, assignment check and review.

Why should I choose SQL School for Python AI-ML training?

👉🏻 Every session is Practical, Step by Step with Concept wise FAQs !!

👉🏻 100% results with on-time practice.  Daily Tasks for every session.

👉🏻 Concept wise tasks be submitted before next class for Job Waiters / Starters.

👉🏻 Concept wise tasks due for submission by Weekends for Working Professionals.

Why Choose SQL School

  • 100% Real-Time and Practical
  • ISO 9001:2008 Certified
  • Concept wise FAQs
  • TWO Real-time Case Studies, One Project
  • Weekly Mock Interviews
  • 24/7 LIVE Server Access
  • Realtime Project FAQs
  • Course Completion Certificate
  • Placement Assistance
  • Job Support
  • Realtime Project Solution
  • MS Certification Guidance