Skip to main content

#Fabric BI 

Fabric BI is Microsoft’s next-generation business intelligence platform within the Microsoft Fabric ecosystem. It unifies data integration, data engineering, data science, and BI into a single SaaS experience. It offers seamless collaboration, centralized governance, and AI-powered insights across the data pipeline. Learning Fabric BI opens doors to roles like BI Analyst, Fabric Consultant, and Cloud BI Developer.

✅ Data Factory Pipelines (ETL)
✅ Dataflow Gen2 Transformations
✅ Lakehouse & Warehouse
✅ Mapping, Wrangling, Alerts
✅ ETL Schedules & Triggers
✅ Security,FAUM, Activator
✅ Git Integration for CI/CD
✅ Power BI Integrations
✅ Real Time Project
✅ 1:1 Mentorship, Resume

Fabric BI
Training Course Contents:

Module 1 : Microsoft SQL (TSQL)

Ch 1: SQL SERVER INTRODUCTION

  • Database Introduction
  •  Types of Databases
  •  Need for & ETL, DWH
  •  BI Implementations
  •  SQL Server Advantages
  •  Version, Editions of MSSQL
  •  Data Analyst Job Roles

Ch 2: SQL SERVER INSTALLATIONS

  • SQL Server 2019, 2017
  • SSMS Tools Installation
  • Database Engine (OLTP)
  • SCM, Configuration Tools
  • Instance Types, Uses
  • Authentication Modes
  • Collation, File Stream

Ch 3: SQL BASICS – 1

  • Need for Databases, Tables
  • Need for SQL Commands
  • DDL, DML & DQL Statements
  • Database Creation @ GUI
  • Data Operations @ GUI
  • Session ID, SQL Context
  • DB, Tables, Data @ SQL

Ch 4: SQL BASICS – 2

  • DDL Variants in MSSQL
  • DML Variants in MSSQL
  • INSERT & INSERT INTO
  • SELECT & SELECT INTO
  • Basic Operators in SQL
  • Special Operators in MSSQL
  • ALTER, ADD, TRUNCATE, DROP

Ch 5: Data Imports, Schemas

  • Data Imports with Excel
  •  ORDER BY & UNION
  • UNION ALL For Sorting Data
  •  Creating, Using Schemas
  •  Real-world Banking Database
  •  Table Migrations @ Schemas
  •  2 Part, 3 Part & 4 Part Naming

Ch 6 : Constraints, Index Basics

  • Need for Constraints, Keys
  •  NULL, NOT NULL, UNIQUE
  •  Primary Key & Foreign Key
  •  RDBMS and ER Models
  •  Identity Property, Default
  •  Clustered Index, Primary Key
  •  Non Clustered Index, Unique

Ch 7: Joins & Views Basics

  • JOINS: Purpose. Inner Joins
  • Left / Right / Full Outer Joins
  • Cross Joins, Query Tuning
  • Creating & Using Views
  • DML, SELECT with Views
  • RLS : WITH CHECK OPTION
  • System Views & Metadata

Ch 8: Functions(UDF), Data Types

  • Using Functions in MSSQL
  •  Scalar Value Functions
  • Inline & Multiline Functions
  • Date & Time Functions
  • String, Aggregate Functions
  • Data Types : Integer, Char, Bit
  • SQL Variant, Timestamp, Date

Ch 9: Stored Procedures,Models

  • Stored Procedures & Usage
  • Creating, Testing Procedures
  • Encryption, Deferred Names
  • SPs for Validations, Analysis
  • System SPs, Recompilation
  • Normal Forms & Types
  • Data Models, Self-References

Ch 10: Triggers, Temp Tables

  • Need for Triggers
  • DDL & DML Triggers
  • Using Memory Tables
  • Data Replication, Automation
  • Local & Global Temp Tables
  • Testing & Using Temp Tables
  • SELECT .. INTO & Bulk Loads

Ch 11: DB Architecture, Locks

  • Planning VLDBs : Files, Sizing
  • Filegroups, Extents & Types
  • Log Files : VLF, Mini LSN
  •  Table Location, Performance
  • Schemas, Transfer, Synonyms
  • Transactions Types, Lock Hint
  •  Query Blocking Scenarios

Ch 12 : Cursors & CTEs, Links

  • Cursors : Realtime Use
  • Fetch & Access Cursor Rows
  • CTEs for SELECT, DML
  • CTEs: Scenarios & Tuning
  • Linked Servers, Remote Joins
  • Linked Servers: MSDTC, RPC
  • Tuning Remote Queries

Ch 13: Merge, Upsert & Rank

  • Need for Merge in ETL
  • Incremental Loads with SQL
  • MERGE and RANK Functions
  • Window Functions, Partition
  • Identify, Remove Duplicates

Ch 14: Grouping & Cube

  • Group By & HAVING
  • Cube, Rollup & Grouping
  • Joins with Group By
  • 3 Table, 4 Table Joins
  • Query Execution Order

Ch 15: Self Joins, Excel Analysis

  • Self Joins & Self References
  •  UNION, UNION ALL
  •  Sub Queries with Joins
  •  IIF, CASE, EXISTS Statements
  •  Excel Analytics, Pivot Reports

Module 2: Fabric Data Engineer

Ch 1: Fabric Introduction

  • Need for Fabric, Big Data
  • Fabric Data Engineering Model
  • Fabric Components (Items)
  • Microsoft Fabric: Advantages
  • Cloud Warehouse Uses
  • Benefits of Fabric Over Azure
  • Azure Versus Fabric DWH

Ch 2: Fabric Account, Workspace

  • Need for Fabric Workspace
  • Workspace Creation Process
  • Pins and New Items
  • Item Categorization
  • ETL, Storage, Analytical
  • Streaming, Monitoring
  • Compute & Separation

Ch 3: Fabric Architecture

  • Intelligent Data Foundation
  • Polaris Distributed Engine
  • Stateless & Stateful
  • Cache, Metadata, Xact & Data
  • Fabric Tasks, Inputs & DAG
  • State Machine & Statistics
  • Hot Spot Recovery

Ch 4: Fabric Warehouse

  • Fabric Warehouse Creation
  • Fabric Warehouse Features
  • Fabric Warehouse Properties
  • Fabric Warehouse Limitations
  • DWH Internal Operations
  • Default Schemas & Objects

Ch 5: Fabric Data Types

  •  Realtime use of Fabric Houses
  • Exact, Approximate Numbers
  • Date and Time Data Types
  • Fixed & Variable Length
  • Binary & String Data Types
  • Fabric Type Limitations

Ch 6: SSMS Connections

  •  Warehouse SQL Connection
  • Database Engine Server
  • Multi Factor Authentication
  • Warehouse Artifacts
  • Executing .SQL Scripts
  • Testing Fabric Artifacts

Ch 7: Fabric Caching

  • Fabric Caching Process
  • In-memory Cache, Disk Cache
  • Cache Types: LRU /MRU
  • Cold Cache / Cold Run
  • Realtime use of Caching
  • Performance Advantages
  • Warehouse Optimizations

Ch 8: Fabric Statistics

  • Query Engine Options
  • Statistics Types
  • Leverage Statistics
  • Auto, Manual Statistics
  • Update Statistics
  • Statistics Consistency
  • Statistics Lists & Reports

Ch 9: Time Travel

  • Continuous Data Protection
  • Data Storage, Retention
  • FOR TIMESTAMP AS OF
  • Time Travel Scenarios
  • Time Travel Implementation
  • Time Travel on Queries
  • Time Travel Limitations

Ch 10: Aggregated Data Store

  • Options for Data Aggregations
  • Save As table, Save As View
  • Single Table Aggregations
  • Multi Table Aggregations
  • Dynamic Conditions
  • Parameterized Aggregations

Ch 11: Zero Copy Cloning

  •  User Layer, Storage Layer
  • Cloning & Parquet Files
  • Synapse Data Warehouse
  • Data History Retention
  • Point In Time , Schema Level
  • Zero Copy Cloning Limitations

Ch 12: Fabric Security

  • Workspace Security
  • Warehouse Security
  • Item Security & Roles
  • Adding AD Users
  • Item Security Limitations
  • MFA & Client Security

Ch 13: Fabric Data Factory

  • ETL Implementation Options
  • Need for Fabric Data Factory
  • ETL Operations in FDF
  • Data Sources, Transformations
  • Data Destinations (Sinks)
  • Creating Pipelines

Ch 14: Fabric Pipelines

  • Activities and Connections
  • Gateways & OnPrem Access
  • Data Sets & Activity Sets
  • Data Activator & Alerts
  • Run ID & Monitoring
  • Pipeline Creation, Verification
  • Activity Check, Schedule

Ch 15: Fabric Pipelines Design

  • Creation Options for Pipelines
  • Azure SQL DB Data Loads
  • Creating Data Sets
  • RRR Transformations
  • Copy Command Usage
  • Internal Staging (Workspace)
  • Data Loads to FDWH

Ch 16: Fabric Aggr Data Loads

  • Aggregation Scenarios
  • Creating Views in TSQL
  • Using Views in FDF Pipelines
  • Using Pipeline Editor
  • Data Loads to Warehouse
  • Pipeline Verifications

Ch 17: ETL Staging

  •  Staging : Advantages
  • Caching & Storing Concept
  • Staging Types in Fabric
  • Workspace & External
  • External Stages in Pipelines
  • Compressions & Advantages
  • Pipeline Trigger, Monitor

Ch 18: OnPrem Gateways

  • Need for On_Premi Gateway
  • Installing & Configuring
  • Authentication, Usage
  • OnPremises Connections
  • Pipelines for Data Loads
  • Warehouse Data Storage
  • Data Refresh with Gateways

Ch 19: Fabric Lakehouse

  • Need for Fabric Lakehouse
  • Files and Tables Storage
  • Data Sources: Parquet Files
  • Transformation Options
  • Direct Lake Concepts
  • Lakehouse Consumption
  • Lakehouse Real time Use

Ch 20: Lakehouse File Loads

  •  Creating Lakehouse
  • Copy Data Wizard
  •  Azure SQL Database Source
  •  File Data Loads in Lakehouse
  •  Concurrency & Batch Count
  •  Pipeline Execution Tests
  •  Pipeline Monitor Check

Ch 21: Lakehouse Aggr Loads

  • Aggregated Data Store
  • Plan & Design Aggregations
  • Testing Aggregations
  • Pipelines for Data Compute
  • Data Copy Options
  • Pipeline Optimizations
  • Data Loads and Verification
  • Pipeline Execution Tests
  • Pipeline Monitor Check

Ch 22: MultiTable Loads in LH

  • Table Loads Connections
  • Data Load in Lakehouse
  • Using Copy Data Wizard
  • Data Store in Lakehouse
  • View Run History, Executions
  • SQL End Points & Access
  • Lakehouse Schemas

Ch 23: Lakehouse Visual Queries

  • Visual Query Interface
  • Visual Editor & Tables / Views
  • Merge, Remove, Sort Tfns
  • Data Preview, Save As Table
  • Save As View : Advantages
  • Using Schemas, Identifiers
  • TDS Packets & Transfer Units

Ch 24: File Explorer

  • Installing One Lake Explorer
  • Autocreation of Folders
  • Workspace Directories
  • Warehouse Directories, Logs
  • Lakehouse Folders, Files
  • Lakehouse Uploads
  • Explorer Tool Limitations

Ch 25: Power Query Level 1

  • Power Query Concept
  • Need for Power Query
  • Data Flow Gen 1
  • Data Flow Gen 2
  • Power Query Items
  • Differences with Copy Activity
  • ETL, ELT Process

Ch 26: Power Query Level 2

  • Data Flow Gen2 Operations
  • PQ Online Editor
  • Working with Binary Content
  • Detailed Data Options
  • Data Cleansing Options
  • Step Names, Aggregations
  • Warehouse Data Loads

Ch 27: Power Query Level 3

  • Binding Power Query Steps
  • Edit / Delete Steps
  • Optimizing Power Query
  • ETL & ELT with Power Query
  • Advanced Editor
  • M Language Expressions
  • Duplicate / Reference Queries

Ch 28: Fabric Notebooks

  • Need for Notebooks
  • Fabric Notebook Types
  • Get / Prep / Analyze
  • Sessions, Markdown Folding
  • Standard, High Concurrency
  • Magic Command
  • Freeze Cells

Ch 29: Spark SQL Notebooks

  • Creating Environment
  • Creating Spark Clusters
  • Spark Cluster Compute
  • SQL Analytics in Notebooks
  • Visual Query Vs SQL
  • Cell Execution Options
  • Magic Command Usage

Ch30: PySpark Notebooks

  •  Creating / Using Environment
  • PySpark Notebook Sessions
  • Reading Source Data
  • Data Prep & Aggregations
  • Data Loads, Analytics
  • Cell Execution Options
  • Markdown Cells

Ch 31: StreamHouse, KQL

  • Need for Stream House
  • Auto creation of KQL
  • Manual KQL Databases
  • Verification & Usage
  • Differences with Warehouse
  • Differences with Lakehouse

Ch 32: KQL Query Sets

  • KQL Database ExtractionFile Imports – on Premises
  • Metadata Edit Options
  • Query Analytics
  • Exports, Visualizations
  • Query Sets Versus Notebooks

Ch 33: Fabric Data Activator

  • Need for Alerts, Notifications
  • Fabric Data Activator Options
  • Alert Conditions, Thresholds
  • Email Notifications
  • Events & Notifications
  • Edit / Enable / Disable

Ch 34: Model Layouts

  • Need for Layouts
  • Creating Model Layouts
  • Adding Refences, Keys
  • Power BI Semantic Models
  • Creating Report Items
  • Using Power BI Desktop

Ch 35: Azure Synapse Migrations

  • Azure Synapse DWH
  • Azure Synapse Connections
  • Migrating to Fabric
  • Compatibility Checks
  • Synapse Vs Fabric Warehouse
  • Fabric DWH Advantages

Ch 36: DP 700 Exam Guidance
End to End Realtime Project: Ecommerce Domain

Module 3: Power BI

Ch 1 : Power BI Introduction

  • Reporting Basics & Types
  • Interactive,Analytical Reports
  • Paginated Reports (RDL)
  • Power BI Eco System
  • Power BI Tools,Service,Server
  • Need for Power Query (M)
  • Need for DAX & Cloud

Ch 2: Power BI Basic Reports

  • Power BI Desktop Installation
  • Basic Report Design (PBIX)
  • Data View, Data Models
  • Data Points, Aggregations
  • Focus Mode, Spotlight, Exports
  • ToolTip, PBIX and PBIT
  • Visual Interactions & Edits

Ch 3 : Grouping, Hierarchies

  • Creating Groups in Power BI
  • Groups : Creation & Usage
  • Group Edits Options
  • Bins & Bin Size, Bin Count
  • Hierarchies: Creation, Use
  • Drill Down, Drill Up
  • Conditional Drill Down

Ch 4 : Visual Sync, Filters

  • Slicer & Single Select
  • Multi Select Options
  • Integer, Character Slicers
  • Visual Sync with Slicers
  • Filters: Visual, Page, Report
  • Drill Thru Filters & Usage
  • Basic, Top & Advanced
  • Clear Filter Options, Resets

Ch 5 : Bookmarks, Big Data

  • Bookmarks Creation & Usage
  • Visual Interactions, Bookmarks
  • Images : Actions, Bookmarks
  • Big Data Access with Power BI
  • Storage Modes: Direct Query
  • Import & Performance Impact
  • Formatting & Data Refresh
  • Summary, Date Time Formats

Ch 6 : Power BI Visualizations

  • Chart and Bar Visuals
  • Line and Area Charts
  • Maps, TreeMaps, HeatMaps
  • Funnel, Card, Multrow Card
  • PieCharts & Settings
  • Waterfall, Sentiment Colors
  • Scatter Chart, Play Axis
  • Infographics, Classifications

Ch 7 : Power Query Level 1

  • Power Query (Mashup)
  • ETL Transformations in PBI
  • Power Query Expressions
  • Table Combine Options
  • Merge, Union All Options
  • Table Transformations

Ch 8 : POWER QUERY LEVEL 2

  • Any Column Transformations
  • String / Text Transformations
  • Numeric Analytics & Mashup
  • Date Time Transformations
  • Add Column Transformations
  • Expressions and New Columns

Ch 9 : POWER QUERY LEVEL 3

  • Parameters in Power Query
  • Static Parameters, Defaults
  • Dynamic Dropdowns, Lists
  • Linking with Table Queries
  • Column From Examples
  • Step Edits, Type Conversions

Ch 10 : Power BI Cloud – 1

  • Power BI Cloud Concepts
  • Workspace Creation, Usag
  • Report Publish & Edits
  • Semantic Models in Realtime
  • Dashboard Creation, Usage
  • Clone, Share, Subscribe
  • Q&A, Lineage, Settings

Ch 11 : Power BI Cloud – 2

  • Data Gateways, Data Refresh
  • Data Source Configurations
  • Data Refresh & Scheduling
  • Gateway Optimizations
  • Semantic Model Optimizations
  • Report Optimizations
  • Dashboard Optimizations

Ch 12 : Power BI Cloud – 3

  • Power BI Apps, Shares
  • App Sections & Options
  • App Updates, Security
  • Excel Analytics
  • Data Explorer Option
  • Sharing, Subscriptions
  • Alerts, Metrics, Insights

Ch 13 : Report Server & DAX

  • Power BI Report Server
  • Report Database, TempDB
  • Web Service & Server URL
  • Paginated Reports (RDL)
  • Report Builder Tool Usage
  • DAX : Purpose, Realtime Use

Ch 14: DAX Level 2

  • DAX Measures Creation, Use
  • DAX Functions: IIF, ISBLANK
  • SUM, CALCULATE Functions
  • DAX Cheat Sheet : Examples
  • Quick Measures in Power BI
  • Running Totals, Filters

Ch 15 : DAX Level 3

  • Star Rating Calculations
  • Data Models & DAX
  • Star & Snowflake Schemas
  • Dimensions, Fact Tables
  • DAX Expressions & Joins
  • DAX Variables, Usage

Ch 16 : DAX Level 4

  • Dynamic Report with DAX
  • SELECTED MEMEBER
  • Time Intelligence with DAX
  • PARALLELPERIOD, DATE
  • DAX with Big Data
  • Big Data Analytics

Ch 17 : Realtime Project Phase 1

  • Project Requirement Spec
  • Understanding Data, Formats
  • Report Pattern Design
  • Report Design & Modelling
  • Power Query, DAX, Insights
  • Analytical Reports in Cloud

Ch 18 : Realtime Project Phase 2

  • Complete Project Solution
  • Project FAQs, Key Roles
  • Real-world Considerations
  • Power BI Admin Concepts
  • Resume Points, FAQs
  • PL 300 Exam Guidance

SQL SCHOOL

24x7 LIVE Online Server (Lab) with Real-time Databases.
Course includes ONE Real-time Project.

[vc_column column_padding=”no-extra-padding” column_padding_tablet=”inherit” column_padding_phone=”inherit” column_padding_position=”all” column_element_direction_desktop=”default” column_element_spacing=”default” desktop_text_alignment=”default” tablet_text_alignment=”default” phone_text_alignment=”default” background_color_opacity=”1″ background_hover_color_opacity=”1″ column_backdrop_filter=”none” column_shadow=”none” column_border_radius=”none” column_link_target=”_self” column_position=”default” gradient_direction=”left_to_right” overlay_strength=”0.3″ width=”1/1″ tablet_width_inherit=”default” animation_type=”default” bg_im