Skip to main content

#ETL Developer

ETL Developer is responsible for extracting data from various sources by designing, building and maintaining data pipelines. ETL Developer role is in high demand and offers excellent pay scale in the tech industry. They often use Azure and AWS cloud platforms to handle their operations.

✅ SQL for ETL Development
✅ Data Mapping, Transformations
✅ Azure Data Factory (ADF)
✅ Azure Databricks
✅ SSIS, ADF For ETL & LET
✅ DWH & Star Schema Design
✅ Pipeline Tuning, Batch Processing
✅ Python, PySpark for Automations
✅ Real Time Project
✅ 1:1 Mentorship, Resume

Module 1: SQL Server TSQL (MS SQL) Queries

Ch 1: Data Analyst Job Roles

  • Introduction to Data
  • Data Analyst Job Roles
  • Data Analyst Challenges
  • Data and Databases Intro

Ch 2: Database Intro & Installations

  • Database Types (OLTP, DWH, ..)
  • DBMS: Basics
  • SQL Server 2025 Installations
  • SSMS Tool Installation
  • Server Connections, Authentications

Ch 3: SQL Basics V1 (Commands)

  • Creating Databases (GUI)
  • Creating Tables, Columns (GUI)
  • SQL Basics (DDL, DML, etc..)
  • Creating Databases, Tables
  • Data Inserts (GUI, SQL)
  • Basic SELECT Queries

Ch 4: SQL Basics V2 (Commands, Operators)

  • DDL : Create, Alter, Drop, Add, modify, etc..
  • DML: Insert, Update, Delete, select into, etc..
  • DQL: Fetch, Insert… Select, etc..
  • SQL Operations: LIKE, BETWEEN, IN, etc..
  • Special Operators

Ch 5: Data Types

  • Integer Data Types
  • Character, MAX Data Types
  • Decimal & Money Data Types
  • Boolean & Binary Data Types
  • Date and Time Data Types
  • SQL_Variant Type, Variables

Ch 6: Excel Data Imports

  • Data Imports with Excel
  • SQL Native Client
  • Order By: Asc, Desc
  • Order By with WHERE
  • TOP & OFFSET
  • UNION, UNION ALL

Ch 7: Schemas & Batches

  • Schemas: Creation, Usage
  • Schemas & Table Grouping
  • Real-world Banking Database
    2 Part, 3 Part & 4 Part Naming
    Batch Concept & “Go” Command

Ch 8: Constraints, Keys & RDBMS – Level 1

  • Null, Not Null Constraints
  • Unique Key Constraint
  • Primary Key Constraint
  • Foreign Key & References
  • Default Constraint & Usage
  • DB Diagrams & ER Models

Ch 9: Normal Forms & RDBMS – Level 2

  • Normal Forms: 1 NF, 2 NF
  • 3 NF, BCNF and 4 NF
  • Adding PK to Tables
  • Adding FK to Tables
  • Cascading Keys
  • Self Referencing Keys
  • Database Diagrams

Ch 10: Joins & Queries

  • Joins: Table Comparisons
  • Inner Joins & Matching Data
  • Outer Joins: LEFT, RIGHT
  • Full Outer Joins & Aliases
  • Cross Join & Table Combination
  • Joining more than 2 tables

Ch 11: Views & RLS

  • Views: Realtime Usage
  • Storing SELECT in Views
  • DML, SELECT with Views
  • RLS: Row Level Security
  • WITH CHECK OPTION
  • Important System Views

Ch 12: Stored Procedures

  • Stored Procedures: Realtime Use
  • Parameters Concept with SPs
  • Procedures with SELECT
  • System Stored Procedures
  • Metadata Access with SPs
  • SP Recompilations
  • Stored Procedures, Tuning

Ch 13: User Defined Functions

  • Using Functions in MSSQL
  • Scalar Functions in Real-world
  • Inline & Multiline Functions
  • Parameterized Queries
  • Date & Time Functions
  • String Functions & Queries
  • Aggregated Functions & Usage

Ch 14: Triggers & Automations

  • Need for Triggers in Real-world
  • DDL & DML Triggers
  • For / After Triggers
  • Instead Of Triggers
  • Memory Tables with Triggers
  • Disabling DMLs & Triggers

Ch 15: Transactions & ACID

  • Transaction Concepts in OLTP
  • Auto Commit Transaction
  • Explicit Transactions
  • COMMIT, ROLLBACK
  • Checkpoint & Logging
  • Lock Hints & Query Blockin
  • READPAST, LOCKHINT

Ch 16: CTEs & Tuning

  • Common Table Expression
  • Creating and Using CTEs
  • CTEs, In-Memory Processing
  • Using CTEs for DML Operations
  • Using CTEs for Tuning
  • CTEs: Duplicate Row Deletion

Ch 17: Indexes Basics, Tuning

  • Indexes & Tuning
  • Clustered Index, Primary Key
  • Non Clustered Index & Unique
  • Creating Indexes Manually
  • Composite Keys, Query Optimizer
  • Composite Indexes & Usage

Ch 18: Group By Queries

  • Group By, Distinct Keywords
  • GROUP BY, HAVING
  • Cube( ) and Rollup( )
  • Sub Totals & Grand Totals
  • Grouping( ) & Usage
  • Group By with UNION
  • Group By with UNION ALL

Ch 19: Joins with Group By

  • Joins with Group By
  • 3 Table, 4 Table Joins
  • Join Queries with Aliases
  • Join Queries & WHERE
  • Join Queries & Group By
  • Joins with Sub Queries
  • Query Execution Order

Ch 20: Sub Queries

  • Sub Queries Concept
  • Sub Queries & Aggregations
  • Joins with Sub Queries
  • Sub Queries with Aliases
  • Sub Queries, Joins, Where
  • Correlated Queries

Ch 21: Cursors & Fetch

  • Cursors: Realtime Usage
  • Local & Global Cursors
  • Scroll & Forward Only Cursors
  • Static & Dynamic Cursors
  • Fetch, Absolute Cursors

Ch 22: Window Functions, CASE

  • IIF Function and Usage
  • CASE Statement Usage
  • Window Functions (Rank)
  • Row_Number( )
  • Rank( ), DenseRank( )
  • Partition By & Order By

Ch 23: Merge(Upsert) & CASE, IIF

  • Merge Statement
  • Upsert Operations with Merge
  • Matched and Not Matched
  • IIF & CASE Statements
  • Merge Statement inside SPs
  • Merge with OLTP & DWH

Ch 24: Key Take-Aways from Module 1

  • Case Study 1: Medicare: Tasks, Solutions
  • Case Study 2: ECommerce: Task, Solutions
  • Chapter Wise Assignments: Solutions
  • Dailly Assignments: Review (Feedback)
  • Weekly Mock Interview: Feedbacks

Module 2: Python (For Data Analysts)

Ch 1: Python Introduction

  • Python Introduction
  • Python Versions
  • Python Implementations
  • Python Installations
  • Python IDE & Usage
  • Jupyter Notebooks

Ch 2: Python Operations

  • Basic Operations in Python
  • Python Scripts, Print()
  • Single, Multiline Statements
  • Python: Internal Architecture
  • Compiler Versus Interpreter

Ch 3: Data Types & Variables

  • Integer / Int Data Types
  • Float, String Data Types
  • Sequence Types: List, Tuple
  • Range, Complex & memview
  • Retrieving Data Type: type()

Ch 4: Python Operators

  • Arithmetic, Assignment Ops
  • Comparison Operators
  • Operator Precedence
  • If … Else Statement, Pass
  • Short Hand If, OR, AND
  • ELIF and ELSE IF Statements

Ch 5: Python Loops, Iterations

  • Python Loop & Realtime Use
  • Python While Loop Statement
  • Break and Continue Statement
  • Iterations & Conditions
  • Exit Conditions & For Loops
  • iter() and Looping Options

Ch 6: Python Functions

  • Python Functions & Usage
  • Function Parameters
  • Default & List Parameters
  • Python Lambda Functions
  • Recursive Functions, Usage
  • Return & Print @ Lamdba

Ch 7: Python Modules

  • Import Python Modules
  • Built In Modules & dir
  • datetime module in Python
  • Date Objections Creation
  • strftime Method & Usage
  • imports & datetime.now()

Ch 8: Python User Inputs & TRY

  • Try Except, Exception Handling
  • Raise an exception method
  • TypeError, Scripting in Python
  • Python User Inputs
  • Python Index Numbers
  • input() & raw_input()

Ch 9: Python File Handling

  • File Handling, Activities
  • Loop, Write, Close Files
  • Appending, Overwriting
  • import os, path.exists
  • f.open, f.write
  • f.read, f.close

Ch 10: Pandas DataFrames 1

  • Installation of Pandas
  • Python Modules & Pandas
  • Pandas Codebase & Usage
  • import pandas.DataFrame
  • Pandas Series, arrays

Ch 11: Pandas DataFrames 2

  • Indexes & Named Options
  • Locate Row and Load Rows
  • Row Index & Index Lists
  • Load Files Into a DataFrame
  • df.to_string() Function
  • tail() & null() Function

Ch 12: Pandas Transformations

  • Pandas – Cleaning Data
  • Replace, Transform Columns
  • Data Discovery & Column Fill
  • Identify & Remove Duplicates
  • dropna(), fillna() Functions
  • Data Plotting & matlib Lib

Ch 13: Realtime Project (Banking / Finance) For Data Analysis [End to End]

Module 3: Azure Data Engineer (ETL, DWH)

Part 1: ADF & Synapse

Ch 1: ETL, DWH Introduction

  • Data Warehouse (DWH)
  • Cloud Concepts: IaaS, PaaS
  • SaaS & Azure Cloud Concepts
  • Azure Resources & Groups
  • Storage, ETL, IoT Resources

Ch 2: Azure Intro, Azure SQL

  • Azure SQL Server, SQL DB
  • Azure SQL Database (OLTP)
  • Azure SQL Pool (DWH)
  • Connections from SSMS Tool
  • Connections from ADS Tool
  • Pause / Resume SQL Pool
  • Source Data Configurations

Ch 3: Azure Synapse (DWH)

  • Synapse Pool Architecture
  • Control Node, Compute Node
  • DMS & Partitioned Tables
  • Creating Tables with TSQL
  • Distributions: RR, Hash, Repl
  • Big Data Loads with TQL
  • Important DMFs & DMVs

Ch 4: Azure Data Factory (ADF)

  • Need for ADF & Pipelines
  • Data Orchestration with IR
  • Integration Runtime Engine
  • Linked Services, Datasets
  • Pipelines: Copy Data Activity
  • Data Flow Activity with IR

Ch 5: Azure SQL DB Loads

  • ADF: Author
  • Azure SQL Database Reads
  • Azure SQL Pool Writes
  • Synapse Analytics with IR
  • Pipeline Design, Validation
  • Pipeline Runs, Monitoring

Ch 6: BLOB Data Loads

  • Azure Storage Account
  • Azure BLOB Containers
  • BLOB Storage in ADF
  • Synapse Analytics with IR
  • ADF Pipeline Edits
  • Pipeline Runs, Monitoring

Ch 7: Pipeline Settings

  • ADF Pipeline Settings
  • Staging : Advantages
  • Reliable Logging
  • Best Effort Logging
  • DIU & DOCP with IR
  • Compressions, Health Check

Ch 8: File Incremental Loads

  • File Incremental Loads
  • Storage Account, Data Lake
  • Binary Copy, Schema Drift
  • Staging Concept in ADF
  • Initial, Incremental Loads
  • Schema & Data Changes

Ch 9: Table Incremental Loads

  • Implement SCD with ADF
  • Self Hosted IR: Realtime Use
  • On-premise Data: Incr Loads
  • Copy Method: Upsert, Keys
  • Staging & ADF Optimizations
  • Pipeline Runs, Activity IDs

Ch 10: ADF Data Flow – 1

  • Data Flow Transformations
  • Spark Clusters for Debugging
  • Optimized Clusters, Preview
  • Conditional Split, SELECT
  • Sort, Union Transformations
  • Pipelines with Data Flow

Ch 11: ADF Data Flow – 2

  • Working with Multiple Tables
  • Join Transform, Broadcast
  • Row Filters, Column Filters
  • Surrogate Keys, Derived Cols
  • ETL Loads Dates, Sink Options
  • Aggregated Data Loads

Ch 12: ADF Data Flow – 3

  • Pivot Transformation
  • Group By & Pivot Keys
  • Column Pattern, Deduplicate
  • Lookup, Cached Lookup
  • Tuning Transformations
  • Tuning Data Flow, Spark

Ch 13: ADF Data Flow – 4

  • Lookup Transformation
  • Cache Lookup
  • Inline Datasets
  • Data Validations
  • Lookup Versus Joins
  • Broadcast Options

Ch 14: ADF Metrics, Alerts

  • Azure Insights
  • Azure Metrics for ADF
  • Azure Metrics for Synapse
  • CPU, Memory Metrics
  • Alerts and Notifications
  • Action Groups, Tuning Options

Ch 15: ADF Parameters, Security

  • Linked Service Parameters
  • Creating Logins
  • Users and ETL Permissions
  • Parameterize Logins
  • Parameterize Users
  • Dynamic Linked Services

Ch 16: Parameters, SCD & ETL

  • ADF Templates in Realtime
  • Implementing ADF SCD
  • Table Incremental Loads
  • Control Tables, Watermarks
  • Pipeline Parameters, SPs
  • Dynamic Data Sets, SCD

Ch 17: CDC with ADF

  • Using CDC in ADF
  • Control Tables (CT): Upserts
  • Handling Inserts, Updates
  • Change Tracking (CT) Tables
  • SCD Type 1 & Type 2
  • ADF, Synapse: Limitations

Ch 18: Synapse Analytics – 1

  • Azure Synapse Analytics
  • Dedicated SQL Pools
  • TSQL: Stored Procedures
  • Synapse Pipelines, Tuning
  • SP Activity in Pipelines, Jobs
  • Comparing ADF & Synapse

Ch 19: Synapse Analytics – 2

  • Serverless Pools in Synapse
  • TSQL Scripts with Serverless
  • ADLS Data Imports with SPs
  • Synapse Analytics
  • Synapse Optimizations
  • Synapse Security & Logins

Ch 20: Synapse Analytics – 3

  • Synapse Notebooks
  • Synapse Analytics with Pools
  • Staging, Aggregations
  • Pipelines with Notebooks
  • Pipelines Vs Notebooks
  • Scheduling Notebooks

Ch 21: CI CD with GitHub

  • Creating Github Account
  • GIT: Main, Branches
  • Connecting with ADF
  • Version Changes
  • Builds and Deployments
  • CI-CD Integrations

Part 2: Azure IoT & ADLS

Ch 22: Azure Intro & Storage

  • Storage, ETL, IoT Resources
  • Azure Storage Components
  • Azure Storage Account, HNS
  • Azure Data Lake Storage
  • Storage Explorer Config

Ch 23: Azure Storage Operations

  • BLOB Storage: Containers
  • File & Folder Uploads, Edits
  • Azure Tables: Row Key
  • Partition Key, Timestamp
  • Use Cases of Azure Tables

Ch 24: Azure Storage Security

  • Access Keys & Admin Access
  • SAS Keys Generation, Ips
  • Azure AD Users, Groups
  • IAM & RBAC with Entra Users
  • ACLs and ADLS Security

Ch 25: Azure SQL DB Migrations

  • On-Premise SQL DB bacpac
  • Azure SQL Deployment
  • Azure Storage from SSMS
  • Azure SQL DB Migration
  • Migration Verifications
  • Testing Migrations in SQL

Ch 26: Azure Tables & Files

  • Azure Tables
  • Entities and Properties
  • Storage Service Operations
  • Storage Browser Operations
  • OData Queries & Filters
  • Azure BLOB Vs Azure Tables

Ch 27: Azure Stream Analytics

  • Azure IoT Hubs & Devices
  • APIs with Connection Strings
  • Azure Steam Analytic Jobs
  • Inputs, Outputs, SAQL Query
  • LIVE Feed: JSON, AVRO Files
  • Watermark & LIVE Streams

Ch 28: Azure Event Hubs

  • Azure Event Hubs
  • Namespaces & Instances
  • Instance Configurations
  • Access Policies & Security
  • Event Based Data Ingestions
  • IoT Hubs Versus Event Hubs

Ch 29: Azure Key Vaults

  • Azure Encryptions at REST
  • SMK & CMK Encryptions
  • Azure Key Vaults & Keys
  • Key Access Policies
  • Rest, Transit Encryptions
  • Realtime Considerations

Ch 30: Access Tiers & Blob Types

  • Azure Access Tiers
  • Hot, Cold, Cool & Archive
  • Block & Page Blobs
  • Append Blobs
  • Storage Snapshots
  • Version Checks @ Snapshots

Ch 31: Azure Metrics & Alerts

  • Azure Encryptions @ REST
  • Azure Key Vaults & Keys
  • SMK & CMK Encryptions
  • Azure Metrics: Ingress
  • Egress, E2E Latency Issues
  • Performance Tuning Options

Ch 32: Storage Optimizations

  • BLOB Types & Content Types
  • Hot, Cool, Cold, Archive Types
  • Creating, Using Access Policies
  • Immutable Storage, Rotation
  • Containerization, Indexing
  • Replication: LRS, ZRS, RA-GRS

Ch 33: Azure Pricing, Functions

  • Azure Logic Apps: Usage
  • Log Apps Usage in ETL
  • Snapshots, Azure Functions
  • Azure Functions Realtime Use
  • ETL & DWH with Functions
  • Azure Resource Pricing

Part 3: Databricks (ETL, DWH) with AI

Ch 34: Databricks Intro & Architecture

  • Databricks Introduction
  • Databricks Features
  • Key Components, Architecture
  • Control Pange, Compute Pane
  • Azure Databricks Resource
  • Databricks Workspace

Ch 35: Spark Cluster Architecture

  • Spark Clusters: Types, Policies
  • Driver Node: Purpose, Compute
  • Worker Node: Purpose, Compute
  • Cluster Manager, Cluster Types
  • Resilent Distributed Datasets
  • DAG, Scaling, Photon Acceleration

Ch 36: DBFS Operations

  • DBFS Concepts: File Store, Tables
  • DBFS File Uploads, Infer Schema
  • Header Row Promotion
  • Create Table using UI
  • HIVE Metastore Catalog
  • Spark Database & Tables

Ch 37: Notebooks Intro

  • ETL & ELT Process
  • Workspace Options: Notebooks
  • Notebooks: SQL, Python, Scala
  • When to use which Notebooks?
  • Notebook Exports, Imports
  • Cloning and Markdown Cells

Ch 38: Spark SQL Notebooks

  • Creating Spark Databases
  • Connecting to Spark Databases
  • Creating Spark tables
  • Data Inserts & DML Operations
  • DDL Operations on Spark Tables
  • SQL Notebook: Limitations

Ch 39: Medallion Architecture

  • Medallion Architecture: Scaling
  • Raw Data with Medallion
  • Transformations (ETL)
  • Bronze Layer: Raw Data
  • Silver Layer with Temp Views
  • Gold Layer with Spark Tables

Ch 40: Python Intro, Variables

  • Python Introduction
  • Python Usage in ETL, DDL, DML
  • Spark Environment for Python
  • PySpark: Python inside Spark
  • Python Variables
  • Python Print Statement

Ch 41: Python Data Types

  • Python Data Types
  • String, Numeric Types
  • Date Data Type
  • List, Tuple & Sets
  • Data frames: Purpose
  • Data frames as Spreadsheets

Ch 42: PySpark Transformations

  • Custom DataFrames
  • Single List, Mixed List Options
  • Concat Function & Index Options
  • Removing Empty Rows
  • Replacing Null Values
  • Merge, Joins, Join Kind

Ch 43: Medallion with DBFS

  • DBFS File Source & DataFrames
  • Temp View For Medallion
  • Dataframe Loads to TempView
  • Data Filters in Temp View
  • Data Aggregations in Temp View
  • Creating Parquet Tables

Ch 44: Medallion with Azure SQL DB

  • Azure SQL DB Connections
  • Azure SQL Server & DB Names
  • Connection String & URL Format
  • Dataframes @ read.jdbc()
  • Aggregated / Incremental Tfns
  • Data Loads into Spark Database

Ch 45: Delta Tables (PySpark)

  • Delta Tables Concept
  • Creating, Using Delta Tables
  • DML Operations in Delta Tables
  • Upsert: Incremental Loads
  • Delta Tables in HIVE Metastore
  • MERGE INTO Statement (Spark)

Ch 46: SCD with Azure SQL DB

  • Delta Tables: Upsert Activity
  • Reading Azure SQL DB Tables
  • Temp Views with Upserts
  • Upsert: Incremental Loads
  • MERGE INTO Statement (Spark)
  • SCD with Azure SQL DB (OLTP)

Ch 47: Python Widgets (PySpark)

  • Widgets: Notebook Parameters
  • widgets.text()
  • widget.get()
  • Reading Widgets into Variables
  • Using Variables in Notebook
  • Aggregated Loads with Widgets

Ch 48: Workflows (PySpark)

  • Python Notebook Schedules
  • Adding Tasks to Jobs
  • Job Clusters & Cluster Sizes
  • High Performance Cluster
  • Job Notifications, Verifications

Ch 49: Unity Catalog

  • Unity Catalog & Big Data Storage
  • Unity Catalog Connectors
  • Catalog Explorer, HIVE
  • Ubuntu VM: Azure Resource
  • Cluster Size & VM Size Options
  • Default Spark Database, Usage

Ch 50: Delta Lake

  • Declarative Frameworks
  • Streaming Data Handling
  • Batch Data Handling
  • Data Quality & Data Lineage
  • Medallion with Delta Lake
  • Time Travel with Delta Lake

Ch 51: Auto Loader in Delta Lake

  • Structured Streaming Source
  • Incremental File Uploads
  • Read, Write Stream (OLTP)
  • Upsert: Incremental Loads
  • Data Ingestions & List Modes
  • File Notification, CheckPoints

Ch 52: Delta LIVE Tables (DLT)

  • Delta LIVE Tables: Scope
  • Creating DLT Tables
  • Streaming Tables
  • Lake Flow Concepts
  • Materialized Views
  • Pipeline Graphs, Lake Flow

Ch 53: Security

  • RBAC Concepts: IAM Roles
  • Databricks Workspace Security
  • Notebook Job Level Security
  • Job Level Security, Sharing
  • JDBC Connections: Server Host
  • Access Tokens & API Access

Ch 54: Scala Notebooks – V1

  • Scala Notebooks: Realtime Use
  • JVM and Scala Notebooks
  • Data Frames, Temp Views
  • Creating Temp Tables in Scala
  • Medallion with DBFS, SQL DB
  • Parquet Tables & Delta Tables

Integrations

👉🏻ADF with Databricks

👉🏻ADF with Storage Tables

👉🏻ADF with Databricks, Azure Storage

Microsoft Fabric

👉🏻Advantages

👉🏻Fabric Configurations

👉🏻Azure to Fabric Migrations

👉🏻Realtime Project For your Resume: End to End Project

👉🏻Databricks Data Engineer: Certification Guidance

Azure Data Engineer curriculum covering Cloud ETL, Azure Data Factory, Databricks, Spark SQL, PySpark, and Delta Lake

What is the ETL Developer course and who should join?

This course is designed for aspiring Data Engineers, ETL Developers, SQL Developers, BI Engineers, Python ETL developers, and professionals aiming to build real-time ETL/ELT pipelines using SQL, Azure, ADF, Synapse, Databricks, and Python.

What is the duration of the ETL Developer course?

The total duration is 15 weeks:
Module 1 – SQL Server TSQL (4 weeks)
Module 2 – Azure Data Engineering (7 weeks)
Module 3 – Python ETL (4 weeks)

What are the prerequisites for this training?

No prior ETL experience is required. Basic computer knowledge is enough. SQL is taught from scratch before moving into Azure and Python ETL.

What SQL skills will I learn in Module 1?

You will learn SQL basics, DDL/DML/DQL, joins, constraints, indexes, functions, stored procedures, triggers, temp tables, replication, MERGE, UPSERT, RANK, window functions, grouping, CUBE, and real-time healthcare case studies.

Does the course include real-time data warehousing concepts?

Yes. You learn ETL, DWH basics, BI implementations, incremental loads, SCD Type 1 & Type 2, CDC, control tables, and end-to-end workflows.

What Azure components will I learn in the ETL Developer program?

Azure SQL DB, Synapse Analytics, ADF (Pipelines, IR, Data Flows), Storage Accounts, ADLS, IoT Hub, Key Vault, Logic Apps, Functions, Stream Analytics, Pricing, RBAC, IAM, and Security.

Is Azure Data Factory (ADF) covered with real-time ETL scenarios?

Yes. You will learn pipelines, datasets, triggers, incremental loads, upserts, schema drift, PolyBase, Data Flows, tuning, debug clusters, surrogate keys, aggregations, and multi-table processing.

Do we learn Azure Synapse Analytics in detail?

Yes. You will learn Synapse architecture, distributed tables, serverless pools, pipelines, SQL transformations, Spark Pools, notebooks, Python ETL, aggregations, and analytics.

Does the course include Databricks and Spark training?

Yes. You will learn Databricks clusters, DBFS, Spark SQL, PySpark transformations, Delta Tables, Jobs, Workflows, Widgets, Unity Catalog, Medallion Architecture, and DLT pipelines.

What real-time projects are included in this ETL Developer course?

Two projects:
• SQL Healthcare Case Study
• Azure Data Engineer Project (ADF + Synapse + Spark + Delta + Pipelines)
Plus resume preparation and interview FAQs

Does the course include SCD, CDC, and Incremental Data Loads?

Yes. You will implement Incremental Loads, SCD Type 1 & 2, CDC, DOCP, watermarking, logging, consistency, and automated Merge statements using SQL, ADF, and DLT.

Will I learn Azure Storage (ADLS) in detail?

Yes. You will learn ADLS Gen2, containers, HNS, Blob operations, uploads, partition keys, ACLs, IAM roles, and advanced storage security.

Does the course include Python programming?

Yes. Python fundamentals, data types, loops, functions, OOP, JSON, RegEx, file handling, error handling, collections, modules, and scripting are included.

What Python ETL skills will I learn?

You will learn Pandas, DataFrames, cleaning, transformations, analytics, SQL Server integration, pymssql, Python notebooks, and end-to-end ETL automation.

Will I learn PySpark in this course?

Yes. PySpark DataFrames, joins, aggregations, ADLS integration, variables, widgets, Spark SQL, transformations, aggregations, and performing ETL with Spark are included.

Do you cover Medallion Architecture (Bronze, Silver, Gold)?

Yes. You will learn how to design Lakehouse pipelines using the Medallion framework, including cleansing, formatting, aggregations, and incremental data pipelines.

Is Delta Live Tables (DLT) included?

Yes. DLT pipelines, automated incremental loads, Merge Into, SCD1, SCD2, control tables, timestamps, and pipeline comparisons with Delta Tables are covered.

Is this course beginner-friendly?

Yes. The course starts from basic SQL and gradually progresses to Azure ETL, Python, Databricks, and end-to-end real-time projects.

What job roles can I apply for after this ETL Developer training?

Yes. The course starts from basic SQL and gradually progresses to Azure ETL, Python, Databricks, and end-to-end real-time projects.

What training modes are available?

LIVE Online Training, Self-Paced Videos, Corporate Training, and Demo Sessions directly with the trainer.

Training Modes

LIVE Online Training

Instructor Led

Self Paced Videos

 On-Demand

Corporate Training

With 100% Hands-On

Placement Partners

SQL SCHOOL

24x7 LIVE Online Server (Lab) with Real-time Databases.
Course includes ONE Real-time Project.

Why Choose SQL School

  • 100% Real-Time and Practical
  • ISO 9001:2008 Certified
  • Weekly Mock Interviews
  • 24/7 LIVE Server Access
  • Realtime Project FAQs
  • Course Completion Certificate
  • Placement Assistance
  • Job Support