Skip to main content

#Data Science

Data Science is a multidisciplinary field that extracts insights and knowledge from structured and unstructured data. It combines statistics, programming, and domain expertise to analyze and interpret complex data patterns. Data Scientists help businesses make data-driven decisions through predictive models and visualizations. This field offers exciting career opportunities in AI, analytics, finance, healthcare, and tech industries

Data Science
Training Course Contents:

Module 1 : Microsoft SQL (TSQL)

Ch 1: SQL SERVER INTRODUCTION

  • Database Introduction
  •  Types of Databases
  •  Need for & ETL, DWH
  •  BI Implementations
  •  SQL Server Advantages
  •  Version, Editions of MSSQL
  •  Data Analyst Job Roles

Ch 2: SQL SERVER INSTALLATIONS

  • SQL Server 2019, 2017
  • SSMS Tools Installation
  • Database Engine (OLTP)
  • SCM, Configuration Tools
  • Instance Types, Uses
  • Authentication Modes
  • Collation, File Stream

Ch 3: SQL BASICS – 1

  • Need for Databases, Tables
  • Need for SQL Commands
  • DDL, DML & DQL Statements
  • Database Creation @ GUI
  • Data Operations @ GUI
  • Session ID, SQL Context
  • DB, Tables, Data @ SQL

Ch 4: SQL BASICS – 2

  • DDL Variants in MSSQL
  • DML Variants in MSSQL
  • INSERT & INSERT INTO
  • SELECT & SELECT INTO
  • Basic Operators in SQL
  • Special Operators in MSSQL
  • ALTER, ADD, TRUNCATE, DROP

Ch 5: Data Imports, Schemas

  • Data Imports with Excel
  •  ORDER BY & UNION
  • UNION ALL For Sorting Data
  •  Creating, Using Schemas
  •  Real-world Banking Database
  •  Table Migrations @ Schemas
  •  2 Part, 3 Part & 4 Part Naming

Ch 6 : Constraints, Index Basics

  • Need for Constraints, Keys
  •  NULL, NOT NULL, UNIQUE
  •  Primary Key & Foreign Key
  •  RDBMS and ER Models
  •  Identity Property, Default
  •  Clustered Index, Primary Key
  •  Non Clustered Index, Unique

Ch 7: Joins & Views Basics

  • JOINS: Purpose. Inner Joins
  • Left / Right / Full Outer Joins
  • Cross Joins, Query Tuning
  • Creating & Using Views
  • DML, SELECT with Views
  • RLS : WITH CHECK OPTION
  • System Views & Metadata

Ch 8: Functions(UDF), Data Types

  • Using Functions in MSSQL
  •  Scalar Value Functions
  • Inline & Multiline Functions
  • Date & Time Functions
  • String, Aggregate Functions
  • Data Types : Integer, Char, Bit
  • SQL Variant, Timestamp, Date

Ch 9: Stored Procedures,Models

  • Stored Procedures & Usage
  • Creating, Testing Procedures
  • Encryption, Deferred Names
  • SPs for Validations, Analysis
  • System SPs, Recompilation
  • Normal Forms & Types
  • Data Models, Self-References

Ch 10: Triggers, Temp Tables

  • Need for Triggers
  • DDL & DML Triggers
  • Using Memory Tables
  • Data Replication, Automation
  • Local & Global Temp Tables
  • Testing & Using Temp Tables
  • SELECT .. INTO & Bulk Loads

Ch 11: DB Architecture, Locks

  • Planning VLDBs : Files, Sizing
  • Filegroups, Extents & Types
  • Log Files : VLF, Mini LSN
  •  Table Location, Performance
  • Schemas, Transfer, Synonyms
  • Transactions Types, Lock Hint
  •  Query Blocking Scenarios

Ch 12 : Cursors & CTEs, Links

  • Cursors : Realtime Use
  • Fetch & Access Cursor Rows
  • CTEs for SELECT, DML
  • CTEs: Scenarios & Tuning
  • Linked Servers, Remote Joins
  • Linked Servers: MSDTC, RPC
  • Tuning Remote Queries

Ch 13: Merge, Upsert & Rank

  • Need for Merge in ETL
  • Incremental Loads with SQL
  • MERGE and RANK Functions
  • Window Functions, Partition
  • Identify, Remove Duplicates

Ch 14: Grouping & Cube

  • Group By & HAVING
  • Cube, Rollup & Grouping
  • Joins with Group By
  • 3 Table, 4 Table Joins
  • Query Execution Order

Ch 15: Self Joins, Excel Analysis

  • Self Joins & Self References
  •  UNION, UNION ALL
  •  Sub Queries with Joins
  •  IIF, CASE, EXISTS Statements
  •  Excel Analytics, Pivot Reports

Module 2: Power BI with AI

Ch 1 : Power BI Introduction

  • Reporting Basics & Types
  • Interactive,Analytical Reports
  • Paginated Reports (RDL)
  • Power BI Eco System
  • Power BI Tools,Service,Server
  • Need for Power Query (M)
  • Need for DAX & Cloud

Ch 2: Power BI Basic Reports

  • Power BI Desktop Installation
  • Basic Report Design (PBIX)
  • Data View, Data Models
  • Data Points, Aggregations
  • Focus Mode, Spotlight, Exports
  • ToolTip, PBIX and PBIT
  • Visual Interactions & Edits

Ch 3 : Grouping, Hierarchies

  • Creating Groups in Power BI
  • Groups : Creation & Usage
  • Group Edits Options
  • Bins & Bin Size, Bin Count
  • Hierarchies: Creation, Use
  • Drill Down, Drill Up
  • Conditional Drill Down

Ch 4 : Visual Sync, Filters

  • Slicer & Single Select
  • Multi Select Options
  • Integer, Character Slicers
  • Visual Sync with Slicers
  • Filters: Visual, Page, Report
  • Drill Thru Filters & Usage
  • Basic, Top & Advanced
  • Clear Filter Options, Resets

Ch 5 : Bookmarks, Big Data

  • Bookmarks Creation & Usage
  • Visual Interactions, Bookmarks
  • Images : Actions, Bookmarks
  • Big Data Access with Power BI
  • Storage Modes: Direct Query
  • Import & Performance Impact
  • Formatting & Data Refresh
  • Summary, Date Time Formats

Ch 6 : Power BI Visualizations

  • Chart and Bar Visuals
  • Line and Area Charts
  • Maps, TreeMaps, HeatMaps
  • Funnel, Card, Multrow Card
  • PieCharts & Settings
  • Waterfall, Sentiment Colors
  • Scatter Chart, Play Axis
  • Infographics, Classifications

Ch 7 : Power Query Level 1

  • Power Query (Mashup)
  • ETL Transformations in PBI
  • Power Query Expressions
  • Table Combine Options
  • Merge, Union All Options
  • Table Transformations

Ch 8 : POWER QUERY LEVEL 2

  • Any Column Transformations
  • String / Text Transformations
  • Numeric Analytics & Mashup
  • Date Time Transformations
  • Add Column Transformations
  • Expressions and New Columns

Ch 9 : POWER QUERY LEVEL 3

  • Parameters in Power Query
  • Static Parameters, Defaults
  • Dynamic Dropdowns, Lists
  • Linking with Table Queries
  • Column From Examples
  • Step Edits, Type Conversions

Ch 10 : Power BI Cloud – 1

  • Power BI Cloud Concepts
  • Workspace Creation, Usag
  • Report Publish & Edits
  • Semantic Models in Realtime
  • Dashboard Creation, Usage
  • Clone, Share, Subscribe
  • Q&A, Lineage, Settings

Ch 11 : Power BI Cloud – 2

  • Data Gateways, Data Refresh
  • Data Source Configurations
  • Data Refresh & Scheduling
  • Gateway Optimizations
  • Semantic Model Optimizations
  • Report Optimizations
  • Dashboard Optimizations

Ch 12 : Power BI Cloud – 3

  • Power BI Apps, Shares
  • App Sections & Options
  • App Updates, Security
  • Excel Analytics
  • Data Explorer Option
  • Sharing, Subscriptions
  • Alerts, Metrics, Insights

Ch 13 : Report Server & DAX

  • Power BI Report Server
  • Report Database, TempDB
  • Web Service & Server URL
  • Paginated Reports (RDL)
  • Report Builder Tool Usage
  • DAX : Purpose, Realtime Use

Ch 14: DAX Level 2

  • DAX Measures Creation, Use
  • DAX Functions: IIF, ISBLANK
  • SUM, CALCULATE Functions
  • DAX Cheat Sheet : Examples
  • Quick Measures in Power BI
  • Running Totals, Filters

Ch 15 : DAX Level 3

  • Star Rating Calculations
  • Data Models & DAX
  • Star & Snowflake Schemas
  • Dimensions, Fact Tables
  • DAX Expressions & Joins
  • DAX Variables, Usage

Ch 16 : DAX Level 4

  • Dynamic Report with DAX
  • SELECTED MEMEBER
  • Time Intelligence with DAX
  • PARALLELPERIOD, DATE
  • DAX with Big Data
  • Big Data Analytics

Ch 17 : Realtime Project Phase 1

  • Project Requirement Spec
  • Understanding Data, Formats
  • Report Pattern Design
  • Report Design & Modelling
  • Power Query, DAX, Insights
  • Analytical Reports in Cloud

Ch 18 : Realtime Project Phase 2

  • Complete Project Solution
  • Project FAQs, Key Roles
  • Real-world Considerations
  • Power BI Admin Concepts
  • Resume Points, FAQs
  • PL 300 Exam Guidance

Module 3: Python

Ch 1. Python Introduction

  • Need for Data Analytics
  • Python in Data Analysis
  • History of Python
  • Python Versions
  • Python Implementations
  • Python Installations
  • Python IDE & Usage
  • Jupyter Notebooks

Ch 2. Python Basics, Architecture

  • Python Scripting Options
  • Basic Operations in Python
  • Python Scripts, Print()
  • Single, Multiline Statements
  • Adding Cells, Saving Notebook
  • Single, Multi Line Comments
  • Python : Internal Architecture
  • Compiler Versus Interpreter

Ch 3. Data Types & Variables

  • Integer / Int Data Types
  • Float & String Data Types
  • Boolean, Binary Types
  • Sequence Types: List, Tuple
  • Range, Complex & memview
  • Retrieving Data Type: type()
  • Multi Assignments & Casting
  • Unpack Collection, Outputs

Ch 4. Python Operators

  • Arithmetic, Assignment Ops
  • Comparison Operators
  • Logical, Identity Operators
  • Member, Bitwise Operators
  • Operator Precedence
  • If … Else Statement, Pass
  • Short Hand If, OR, AND
  • ELIF and ELSE IF Statements
  • Expressions, Ternary OPs

Ch 5: Python Loops, Iterations

  • Python Loop & Realtime Use
  • Python While Loop Statement
  • Break and Continue Statement
  • Using Print with While()
  • Iterations & Conditions
  • Exit Conditions & For Loops
  • Break, Continue & Range
  • __iter__() and __next__()
  • iter() and Looping Options

Ch 6: Python Collections

  • Python Collections (Arrays)
  • list() Constructor, print()
  • Python Tuples, Tuple Items
  • tuple() Constructor, Usage
  • Python Sets : Syntax Rules
  • Duplicates, Types, Ordered
  • Python Dictionaries: Usage
  • Changeable, Ordered Data
  • Dictionary Construct, type()

Ch 7: Python Functions

  • Python Functions & Usage
  • Function Parameters
  • Arguments, **kwargs
  • Default & List Parameters
  • Python Lambda Functions
  • Anonymous Functions
  • Recursive Functions, Usage
  • Return & Print @ Lamdba

Ch 8: Python Classes & Arrays

  • Python Classes & Objects
  • __init__() Function
  • __str__() Function
  • Self Parameters & Objects
  • Python Inheritance & Classes
  • Parent & Child Classes
  • __init__() & super() Function
  • Polymorphism in Python

Ch 9: Python Modules

  • import Python Modules
  • Variables in Modules
  • Built In Modules & dir
  • datetime module in Python
  • Date Objections Creation
  • strftime Method & Usage
  • imports & datetime.now()
  • Using Python Constructors

Ch 10: : Python JSON & RegEx

  • JSON Concepts, Usage
  • Dictionary & import json
  • Python Objects into JSON
  • Formatting & Ordering
  • json.dumps, print options
  • Python Regular Expressions
  • RegEx Module & Function
  •  search() & span() , Strings
  • Using RegEx with JSON

Ch 11: Python User Inputs & TRY

  • Try Except, Exception Handling
  • NameError Resolution
  • Python Finally Block, Usage
  • Raise an exception method
  • TypeError, Scripting in Python
  • Python User Inputs
  • Python Index Numbers
  • Named Indexes, Usage
  • input() & raw_input()

Ch 12: Python File Handling

  • File Handling, Activities
  • r, a, w, x modes
  • t, b Operations
  • Read Only Parts
  • Loop, Write, Close Files
  • Appending, Overwriting
  • import os, path.exists
  • f.open, f.write
  • f.read, f.close

Ch 13: Data Analytics – Pandas

  • Python Modules & Pandas
  • Pandas Codebase & Usage
  • Installation of Pandas
  • import pandas.DataFrame
  • Checking Pandas Version
  • Pandas Series, arrays
  • Labels : Creation, Use
  • series(), print()

Ch 14: Data Analytics – DataFrames

  • Indexes & Named Options
  • Locate Row and Load Rows
  • Row Index & Index Lists
  • Load Files Into a DataFrame
  • pd.read_csv() Function
  • pd.options.display.max_rows
  • df.to_string() Function
  • tail() & null() Function

Ch 15: Data Analytics – Pandas

  • Pandas – Cleaning Data
  • Replace, Transform Columns
  • Data Discovery & Column Fill
  • Identify & Remove Duplicates
  • dropna(), fillna() Functions
  • Pandas – Data Correlations
  • Good & Bad Correlation
  • Data Plotting & matlib Lib

Ch 16: : SQL Server & Python – 1

  • SQL & Databases
  • Azure Data Studio Tool
  • sp_execute_external_script
  • Input Data & Result Sets
  • DDL & DML with Python
  • SQL_out, SQL_in
  • Variables & Parameters
  • Versions, Package List
  • WITH RESULT SETS Options

Ch 17: SQL Server & Python – 2

  • pandas.Series with SQL DBs
  • Indexing Methods in Realtime
  • Convert series to data frame
  • Output values into data.frame
  • pymssql package in SQL Server
  • pip list & Package Manager
  • Python runtime, Py Package
  • pymssql.connect & Usage
  • Cursor Variables & Usage

Ch 18: Power BI with Python

  • Using Python Script Visual
  • PyScript Options & Tuning
  • Settings, Labelling Options
  • Running and Testing Scripts
  • Data Validations in Power BI
  • Power BI: ipynb Scripts
  • Interactive Reports
  • Data Formatting with Python
  • End to End Realtime Projects

SQL SCHOOL

24x7 LIVE Online Server (Lab) with Real-time Databases.
Course includes ONE Real-time Project.

Data Science Training FAQs

What is Data Science Job Role?

A Data Scientist collects, cleans, analyzes, and interprets large amounts of data to extract valuable insights. This role involves working with tools like Python, SQL, Pandas, NumPy, Scikit-learn, and more to build predictive models, perform data visualization, and support data-driven decision-making in organizations.

What are the Job Roles for Data Scince?

  1. Data Scientist
  2. Data Analyst
  3. Machine Learning Engineer
  4. Data Engineer
  5. Business Intelligence (BI) Analyst
  6. AI Engineer and more .. !

What does our Data Science Training course contains?

The course is carefully curated with below modules:
👉🏻Module 1: Microsoft SQL (TSQL)
👉🏻Module 2: Power BI
👉🏻Module 3: Python

Who can join this course?

This course is ideal for:

  • Fresh graduates or students looking to enter the field of AI/ML/Data

  • Professionals from any domain wanting to shift into a data-oriented role

  • Analysts, Developers, and Engineers seeking upskilling in Data Science

No prior coding experience is required. All concepts are taught step-by-step from basics to advanced level.

 

What training modes are available?

Option 1:        LIVE Online Training  (100% Interactive, step by step, assignments)

Option 2:        Self Paced Videos (100% practical, step by step with concept wise assignments)

You may choose any one of these options, same curriculum!

I (Trainer) shall be available for doubts and clarifications, assignment check and review.

Why should I choose SQL School for Data Science training?

👉🏻 Every session is Practical, Step by Step with Concept wise FAQs !!

👉🏻 100% results with on-time practice.  Daily Tasks for every session.

👉🏻 Concept wise tasks be submitted before next class for Job Waiters / Starters.

👉🏻 Concept wise tasks due for submission by Weekends for Working Professionals.

Why Choose SQL School

  • 100% Real-Time and Practical
  • ISO 9001:2008 Certified
  • Concept wise FAQs
  • TWO Real-time Case Studies, One Project
  • Weekly Mock Interviews
  • 24/7 LIVE Server Access
  • Realtime Project FAQs
  • Course Completion Certificate
  • Placement Assistance
  • Job Support
  • Realtime Project Solution
  • MS Certification Guidance