Skip to main content

#Data Science Engineer

A Data Science Engineer specializes in transforming raw data into meaningful insights using statistics, machine learning, and advanced analytics. They design, build, and deploy data-driven models and pipelines that power intelligent applications, making data science a critical capability for decision-making, automation, and AI-driven solutions across industries.

✅ Python Programming & Data Analysis
✅ SQL for Analytics & Data Modeling
✅ Data Cleaning & Feature Engineering
✅ Machine Learning Algorithms
✅ Supervised & Unsupervised Learning
✅ Big Data with Spark & PySpark
✅ Azure Databricks & Cloud Data
✅ ML Ops & Model Deployment
✅ Power BI Analytics & AI Insights
✅ End-to-End Real-Time Project

Module 1: SQL Server TSQL (MS SQL) Queries

Ch 1: Data Engineer Job Roles

  • Introduction to Data Engineer
  • Data Science Engineer Job Roles
  • Data and Databases Concepts

Ch 2: Database Intro & Installations

  • Database Types (OLTP, DWH, ..)
  • DBMS: Basics
  • SQL Server 2025 Installations
  • SSMS Tool Installation
  • Server Connections, Authentications

Ch 3: SQL Basics V1 (Commands)

  • Creating Databases (GUI)
  • Creating Tables, Columns (GUI)
  • SQL Basics (DDL, DML, etc..)
  • Creating Databases, Tables
  • Data Inserts (GUI, SQL)
  • Basic SELECT Queries

Ch 4: SQL Basics V2 (Commands, Operators)

  • DDL: Create, Alter, Drop, Add, modify, etc..
  • DML: Insert, Update, Delete, select into, etc..
  • DQL: Fetch, Insert… Select, etc..
  • SQL Operations: LIKE, BETWEEN, IN, etc..
  • Special Operators

Ch 5: Data Types

  • Integer Data Types
  • Character, MAX Data Types
  • Decimal & Money Data Types
  • Boolean & Binary Data Types
  • Date and Time Data Types
  • SQL_Variant Type, Variables

Ch 6: Excel Data Imports

  • Data Imports with Excel
  • SQL Native Client
  • Order By: Asc, Desc
  • Order By with WHERE
  • TOP & OFFSET
  • UNION, UNION ALL

Ch 7: Schemas & Batches

  • Schemas: Creation, Usage
  • Schemas & Table Grouping
  • Real-world Banking Database
  • 2 Part, 3 Part & 4 Part Naming
  • Batch Concept & “Go” Command

Ch 8: Constraints, Keys & RDBMS – Level 1

  • Null, Not Null Constraints
  • Unique Key Constraint
  • Primary Key Constraint
  • Foreign Key & References
  • Default Constraint & Usage
  • DB Diagrams & ER Models

Ch 9: Normal Forms & RDBMS – Level 2

  • Normal Forms: 1 NF, 2 NF
  • 3 NF, BCNF and 4 NF
  • Adding Keys to Tables
  • Cascading Keys
  • Self Referencing Keys
  • Database Diagrams

Ch 10: Joins & Queries

  • Joins: Table Comparisons
  • Inner Joins & Matching Data
  • Outer Joins: LEFT, RIGHT
  • Full Outer Joins & Aliases
  • Cross Join & Table Combination
  • Joining more than 2 tables

Ch 11: Views & RLS

  • Views: Realtime Usage
  • Storing SELECT in Views
  • DML, SELECT with Views
  • RLS: Row Level Security
  • WITH CHECK OPTION
  • Important System Views

Ch 12: Stored Procedures

  • Stored Procedures: Realtime Use
  • Parameters Concept with SPs
  • Procedures with SELECT
  • System Stored Procedures
  • Metadata Access with SPs
  • SP Recompilations

Ch 13: User Defined Functions

  • Using Functions in MSSQL
  • Scalar Functions in Real-world
  • Inline & Multiline Functions
  • Parameterized Queries
  • Date & Time Functions
  • String Functions & Queries
  • Aggregated Functions & Usage

Ch 14: Triggers & Automations

  • Need for Triggers in Real-world
  • DDL & DML Triggers
  • For / After Triggers
  • Instead Of Triggers
  • Memory Tables with Triggers
  • Disabling DMLs & Triggers

Ch 15: Transactions & ACID

  • Transaction Concepts in OLTP
  • Auto Commit Transaction
  • Explicit Transactions
  • COMMIT, ROLLBACK
  • Checkpoint & Logging
  • Lock Hints & Query Blocking
  • READPAST, LOCKHINT

Ch 16: CTEs & Tuning

  • Common Table Expression
  • Creating and Using CTEs
  • CTEs, In-Memory Processing
  • Using CTEs for DML Operations
  • Using CTEs for Tuning
  • CTEs: Duplicate Row Deletion

Ch 17: Indexes Basics, Tuning

  • Indexes & Tuning
  • Clustered Index, Primary Key
  • Non Clustered Index & Unique
  • Creating Indexes Manually
  • Composite Keys, Query Optimizer
  • Composite Indexes & Usage

Ch 18: Group By Queries

  • Group By, Distinct Keywords
  • GROUP BY, HAVING
  • Cube( ) and Rollup( )
  • Sub Totals & Grand Totals
  • Grouping( ) & Usage
  • Group By with UNION
  • Group By with UNION ALL

Ch 19: Joins with Group By

  • Joins with Group By
  • 3 Table, 4 Table Joins
  • Join Queries with Aliases
  • Join Queries & WHERE, Group By
  • Joins with Sub Queries
  • Query Execution Order

Ch 20: Sub Queries

  • Sub Queries Concept
  • Sub Queries & Aggregations
  • Joins with Sub Queries
  • Sub Queries with Aliases
  • Sub Queries, Joins, Where
  • Correlated Queries

Ch 21: Cursors & Fetch

  • Cursors: Realtime Usage
  • Local & Global Cursors
  • Scroll & Forward Only Cursors
  • Static & Dynamic Cursors
  • Fetch, Absolute Cursors

Ch 22: Window Functions, CASE

  • IIF Function and Usage
  • CASE Statement Usage
  • Window Functions (Rank)
  • Row_Number( )
  • Rank( ), DenseRank( )
  • Partition By & Order By

Ch 23: Merge(Upsert) & CASE, IIF

  • Merge Statement
  • Upsert Operations with Merge
  • Matched and Not Matched
  • IIF & CASE Statements
  • Merge Statement inside SPs
  • Merge with OLTP & DWH

Module 2: Azure Data Engineer (ADF, Synapse)

Part 1 (ADF, Synapse)

Ch 1: ETL, DWH Introduction

  • Data Warehouse (DWH)
  • Cloud Concepts: IaaS, PaaS
  • SaaS & Azure Cloud Concepts
  • Azure Resources & Groups
  • Storage, ETL, IoT Resources

Ch 2: Azure Intro, Azure SQL

  • Azure SQL Server, SQL DB
  • Azure SQL Database (OLTP)
  • Azure SQL Pool (DWH)
  • Connections from SSMS Tool
  • Connections from ADS Tool
  • Pause / Resume SQL Pool
  • Source Data Configurations

Ch 3: Azure Synapse (DWH)

  • Synapse Pool Architecture
  • Control Node, Compute Node
  • DMS & Partitioned Tables
  • Creating Tables with TSQL
  • Distributions: RR, Hash, Repl
  • Big Data Loads with TQL
  • Important DMFs & DMVs

Ch 4: Azure Data Factory (ADF)

  • Need for ADF & Pipelines
  • Data Orchestration with IR
  • Integration Runtime Engine
  • Linked Services, Datasets
  • Pipelines: Copy Data Activity
  • Data Flow Activity with IR

Ch 5: Azure SQL DB Loads

  • ADF: Author
  • Azure SQL Database Reads
  • Azure SQL Pool Writes
  • Synapse Analytics with IR
  • Pipeline Design, Validation
  • Pipeline Runs, Monitoring

Ch 6: BLOB Data Loads

  • Azure Storage Account
  • Azure BLOB Containers
  • BLOB Storage in ADF
  • Synapse Analytics with IR
  • ADF Pipeline Edits
  • Pipeline Runs, Monitoring

Ch 7: Pipeline Settings

  • ADF Pipeline Settings
  • Staging : Advantages
  • Reliable Logging
  • Best Effort Logging
  • DIU & DOCP with IR
  • Compressions, Health Check

Ch 8: File Incremental Loads

  • File Incremental Loads
  • Storage Account, Data Lake
  • Binary Copy, Schema Drift
  • Staging Concept in ADF
  • Initial, Incremental Loads
  • Schema & Data Changes

Ch 9: Table Incremental Loads

  • Implement SCD with ADF
  • Self Hosted IR: Realtime Use
  • On-premise Data: Incr Loads
  • Copy Method: Upsert, Keys
  • Staging & ADF Optimizations
  • Pipeline Runs, Activity IDs

Ch 10: ADF Data Flow – 1

  • Data Flow Transformations
  • Spark Clusters for Debugging
  • Optimized Clusters, Preview
  • Conditional Split, SELECT
  • Sort, Union Transformations
  • Pipelines with Data Flow

Ch 11: ADF Data Flow – 2

  • Working with Multiple Tables
  • Join Transform, Broadcast
  • Row Filters, Column Filters
  • Surrogate Keys, Derived Cols
  • ETL Loads Dates, Sink Options
  • Aggregated Data Loads

Ch 12: ADF Data Flow – 3

  • Pivot Transformation
  • Group By & Pivot Keys
  • Column Pattern, Deduplicate
  • Lookup, Cached Lookup
  • Tuning Transformations
  • Tuning Data Flow, Spark

Ch 13: ADF Data Flow – 4

  • Lookup Transformation
  • Cache Lookup
  • Inline Datasets
  • Data Validations
  • Lookup Versus Joins
  • Broadcast Options

Ch 14: ADF Metrics, Alerts

  • Azure Insights
  • Azure Metrics for ADF
  • Azure Metrics for Synapse
  • CPU, Memory Metrics
  • Alerts and Notifications
  • Action Groups, Tuning Options

Ch 15: ADF Parameters, Security

  • Linked Service Parameters
  • Creating Logins
  • Users and ETL Permissions
  • Parameterize Logins
  • Parameterize Users
  • Dynamic Linked Services

Ch 16: Parameters, SCD & ETL

  • ADF Templates in Realtime
  • Implementing ADF SCD
  • Table Incremental Loads
  • Control Tables, Watermarks
  • Pipeline Parameters, SPs
  • Dynamic Data Sets, SCD

Ch 17: CDC with ADF

  • Using CDC in ADF
  • Control Tables (CT): Upserts
  • Handling Inserts, Updates
  • Change Tracking (CT) Tables
  • SCD Type 1 & Type 2
  • ADF, Synapse: Limitations

Ch 18: Synapse Analytics – 1

  • Azure Synapse Analytics
  • Dedicated SQL Pools
  • TSQL: Stored Procedures
  • Synapse Pipelines, Tuning
  • SP Activity in Pipelines, Jobs
  • Comparing ADF & Synapse

Ch 19: Synapse Analytics – 2

  • Serverless Pools in Synapse
  • TSQL Scripts with Serverless
  • ADLS Data Imports with SPs
  • Synapse Analytics
  • Synapse Optimizations
  • Synapse Security & Logins

Ch 20: Synapse Analytics – 3

  • Synapse Notebooks
  • Synapse Analytics with Pools
  • Staging, Aggregations
  • Pipelines with Notebooks
  • Pipelines Vs Notebooks
  • Scheduling Notebooks

Ch 21: CI CD with GitHub

  • Creating Github Account
  • GIT: Main, Branches
  • Connecting with ADF
  • Version Changes
  • Builds and Deployments
  • CI-CD Integrations

Part 2 (Azure IoT, ADLS, ASA Jobs)

Ch 22: Azure Intro & Storage

  • Storage, ETL, IoT Resources
  • Azure Storage Components
  • Azure Storage Account, HNS
  • Azure Data Lake Storage
  • Storage Explorer Config

Ch 23: Azure Storage Operations

  • BLOB Storage: Containers
  • File & Folder Uploads, Edits
  • Azure Tables: Row Key
  • Partition Key, Timestamp
  • Use Cases of Azure Tables

Ch 24: Azure Storage Security

  • Access Keys & Admin Access
  • SAS Keys Generation, Ips
  • Azure AD Users, Groups
  • IAM & RBAC with Entra Users
  • ACLs and ADLS Security

Ch 25: Azure SQL DB Migrations

  • On-Premise SQL DB bacpac
  • Azure SQL Deployment
  • Azure Storage from SSMS
  • Azure SQL DB Migration
  • Migration Verifications
  • Testing Migrations in SQL

Ch 26: Azure Tables & Files

  • Azure Tables
  • Entities and Properties
  • Storage Service Operations
  • Storage Browser Operations
  • OData Queries & Filters
  • Azure BLOB Vs Azure Tables

Ch 27: Azure Stream Analytics

  • Azure IoT Hubs & Devices
  • APIs with Connection Strings
  • Azure Steam Analytic Jobs
  • Inputs, Outputs, SAQL Query
  • LIVE Feed: JSON, AVRO Files
  • Watermark & LIVE Streams

Ch 28: Azure Event Hubs

  • Azure Event Hubs
  • Namespaces & Instances
  • Instance Configurations
  • Access Policies & Security
  • Event Based Data Ingestions
  • IoT Hubs Versus Event Hubs

Ch 29: Azure Key Vaults

  • Azure Encryptions at REST
  • SMK & CMK Encryptions
  • Azure Key Vaults & Keys
  • Key Access Policies
  • Rest, Transit Encryptions
  • Realtime Considerations

Ch 30: Access Tiers & Blob Types

  • Azure Access Tiers
  • Hot, Cold, Cool & Archive
  • Block & Page Blobs
  • Append Blobs
  • Storage Snapshots
  • Version Checks @ Snapshots

Ch 31: Azure Metrics & Alerts

  • Azure Encryptions @ REST
  • Azure Key Vaults & Keys
  • SMK & CMK Encryptions
  • Azure Metrics: Ingress
  • Egress, E2E Latency Issues
  • Performance Tuning Options

Ch 32: Storage Optimizations

  • BLOB Types & Content Types
  • Hot, Cool, Cold, Archive Types
  • Creating, Using Access Policies
  • Immutable Storage, Rotation
  • Containerization, Indexing
  • Replication: LRS, ZRS, RA-GRS

Ch 33: Azure Pricing, Functions

  • Azure Logic Apps: Usage
  • Log Apps Usage in ETL
  • Snapshots, Azure Functions
  • Azure Functions Realtime Use
  • ETL & DWH with Functions
  • Azure Resource Pricing

Part 3 (Databricks, AutoLoader, DLT, PySpark)

Ch 34: Databricks Intro & Architecture

  • Databricks Introduction
  • Databricks Features
  • Key Components, Architecture
  • Control Pange, Compute Pane
  • Azure Databricks Resource
  • Databricks Workspace

Ch 35: Spark Cluster Architecture

  • Spark Clusters: Types, Policies
  • Driver Node: Purpose, Compute
  • Worker Node: Purpose, Compute
  • Cluster Manager, Cluster Types
  • Resilent Distributed Datasets
  • DAG, Scaling, Photon Acceleration

Ch 36: DBFS Operations

  • DBFS Concepts: File Store, Tables
  • DBFS File Uploads, Infer Schema
  • Header Row Promotion
  • Create Table using UI
  • HIVE Metastore Catalog
  • Spark Database & Tables

Ch 37: Notebooks Intro

  • ETL & ELT Process
  • Workspace Options: Notebooks
  • Notebooks: SQL, Python, Scala
  • When to use which Notebooks?
  • Notebook Exports, Imports
  • Cloning and Markdown Cells

Ch 38: Spark SQL Notebooks

  • Creating Spark Databases
  • Connecting to Spark Databases
  • Creating Spark tables
  • Data Inserts & DML Operations
  • DDL Operations on Spark Tables
  • SQL Notebook: Limitations

Ch 39: Medallion Architecture

  • Medallion Architecture: Scaling
  • Raw Data with Medallion
  • Transformations (ETL)
  • Bronze Layer: Raw Data
  • Silver Layer with Temp Views
  • Gold Layer with Spark Tables

Ch 40: Python Intro, Variables

  • Python Introduction
  • Python Usage in ETL, DDL, DML
  • Spark Environment for Python
  • PySpark: Python inside Spark
  • Python Variables
  • Python Print Statement

Ch 41: Python Data Types

  • Python Data Types
  • String, Numeric Types
  • Date Data Type
  • List, Tuple & Sets
  • Data frames: Purpose
  • Data frames as Spreadsheets

Ch 42: PySpark Transformations

  • Custom DataFrames
  • Single List, Mixed List Options
  • Concat Function & Index Options
  • Removing Empty Rows
  • Replacing Null Values
  • Merge, Joins, Join Kind

Ch 43: Medallion with DBFS

  • DBFS File Source & DataFrames
  • Temp View For Medallion
  • Dataframe Loads to TempView
  • Data Filters in Temp View
  • Data Aggregations in Temp View
  • Creating Parquet Tables

Ch 44: Medallion with Azure SQL DB

  • Azure SQL DB Connections
  • Azure SQL Server & DB Names
  • Connection String & URL Format
  • Dataframes @ spark.read.jdbc()
  • Aggregated / Incremental Tfns
  • Data Loads into Spark Database

Ch 45: Delta Tables (PySpark)

  • Delta Tables Concept
  • Creating, Using Delta Tables
  • DML Operations in Delta Tables
  • Upsert: Incremental Loads
  • Delta Tables in HIVE Metastore
  • MERGE INTO Statement (Spark)

Ch 46: SCD with Azure SQL DB

  • Delta Tables: Upsert Activity
  • Reading Azure SQL DB Tables
  • Temp Views with Upserts
  • Upsert: Incremental Loads
  • MERGE INTO Statement (Spark)
  • SCD with Azure SQL DB (OLTP)

Ch 47: Python Widgets (PySpark)

  • Widgets: Notebook Parameters
  • dbutils.widgets.text()
  • dbuitls.widget.get()
  • Reading Widgets into Variables
  • Using Variables in Notebook
  • Aggregated Loads with Widgets

Ch 48: Workflows (PySpark)

  • Python Notebook Schedules
  • Adding Tasks to Jobs
  • Job Clusters & Cluster Sizes
  • High Performance Cluster
  • Job Notifications, Verifications

Ch 49: Unity Catalog

  • Unity Catalog & Big Data Storage
  • Unity Catalog Connectors
  • Catalog Explorer, HIVE
  • Ubuntu VM: Azure Resource
  • Cluster Size & VM Size Options
  • Default Spark Database, Usage

Ch 50: Delta Lake

  • Declarative Frameworks
  • Streaming Data Handling
  • Batch Data Handling
  • Data Quality & Data Lineage
  • Medallion with Delta Lake
  • Time Travel with Delta Lake

Ch 51: Auto Loader in Delta Lake

  • Structured Streaming Source
  • Incremental File Uploads
  • Read, Write Stream (OLTP)
  • Upsert: Incremental Loads
  • Data Ingestions & List Modes
  • File Notification, CheckPoints

Ch 52: Delta LIVE Tables (DLT)

  • Delta LIVE Tables: Scope
  • Creating DLT Tables
  • Streaming Tables
  • Lake Flow Concepts
  • Materialized Views
  • Pipeline Graphs, Lake Flow

Ch 53: Security

  • RBAC Concepts: IAM Roles
  • Databricks Workspace Security
  • Notebook Job Level Security
  • Job Level Security, Sharing
  • JDBC Connections: Server Host
  • Access Tokens & API Access

Ch 54: Scala Notebooks – V1

  • Scala Notebooks: Realtime Use
  • JVM and Scala Notebooks
  • Data Frames, Temp Views
  • Creating Temp Tables in Scala
  • Medallion with DBFS, SQL DB
  • Parquet Tables & Delta Tables

Ch 55: Azure Data Engineer (Integrations, Projects)

👉🏻ADF with Storage Tables

👉🏻ADF with Databricks, Azure Storage

👉🏻Microsoft Fabric Concepts

👉🏻Fabric Configurations

👉🏻Azure Versus Fabric Implementations

👉🏻Azure to Fabric Migrations

👉🏻Realtime Project For your Resume: End to End Project

👉🏻Databricks Data Engineer: Certification Guidance

Module 3: Power BI

Ch 1: Power BI Intro, Installation

  • Power BI & Data Analysis
  • 5 Design Tools, 3 Techniques
  • 2 Hosting Solutions
  • Power BI with Co-Pilot & AI
  • Power BI Installation

Ch 2: Report Design Concepts

  • Basic Report Design (PBIX)
  • Get Data, Canvas (Design)
  • Data View, Data Models
  • Data Points, Spotlight
  • Focus Mode, PDF Exports

Ch 3: Visual Interactions, PBIT

  • Visual Interactions & Edits
  • Limitations with Visual Edits
  • Creating Power BI Templates
  • CSV Exports & PBIT Imports

Ch 4: Grouping, Hierarchies

  • Creating Groups : Lists
  • Creating Groups: Bins
  • List Items & Group Edits
  • Bin Size & Bin Count

Ch 5: Slicer & Visual Sync

  • Slicer Visual in Power BI
  • Slicer: Format Options
  • Single Select, Multi Select
  • Slicer: Select All On / Off
  • Visual Sync with Slicers

Ch 6: Hierarchies & Drill-Down

  • Hierarchies: Creation, Use
  • Hierarchies: Advantages
  • Drill Up, Drill Down
  • Conditional Drill Down
  • Filtered Drill Down, Table View

Ch 7: Filters & Drill Thru

  • Power BI Filters
  • Basic, Top & Advanced
  • Visual Filters, Page Filters
  • Report Level Filters, Clear Filter
  • Drill Thru Filters & Usage

Ch 8: Bookmarks, Buttons

  • Power BI Bookmarks
  • Images: Actions, Bookmarks
  • Buttons: Actions, Bookmarks
  • Page to Page NavigationsScore Cards, Master Pages

Ch 9: SQL DB Access & Big Data

  • SQL DB Access, Queries
  • Storage Modes: Direct Query
  • Formatting & Date Time
  • Storage Modes in Power BI
  • Azure (Big Data) Access & Formatting

Ch 10: Power BI Visualizations

  • Charts, Bars, Lines, Area
  • TreeMaps & HeatMaps
  • Funnel, Card, Multrow Card
  • PieCharts & Waterfall
  • Scatter Chart, Play Axis
  • Infographics, Classifications

Ch 11: Power Query Introduction

  • Power Query (Mashup)
  • ETL Transformations in PBI
  • Power Query Expressions
  • Table Combine Options
  • Merge, Union All Options
  • Close, Apply & Visualize

Ch 12: Power Query : Table Tfns

  • Table Duplicate, Header Promotion
  • Group By Transformation
  • Aggregate, Pivot Operation
  • Reverse Rows, Count Rows
  • Advanced Power Query Mode

Ch 13: Power Query: Column Tfn

  • Any Column Transformations
  • Data Type Detection, Change
  • Rename, Replace, Move
  • Fill Up, Fil Down
  • Step Edits & Rollbacks

Ch 14: Power Query: Text, Date

  • String / Text Transformations
  • Split, Merge, Extract, Format
  • Numeric and Date Time
  • Add Column & Expressions
  • Expressions and New Columns
  • Column From Examples

Ch 15: Power Query: Parameters

  • Parameters in Power Query
  • Static Parameters, Defaults
  • Dynamic Dropdowns, Lists
  • Linking with Table Queries
  • Step Edits, Type Conversions

Ch 16: Power BI Cloud: Publish

  • Power BI Cloud Concepts
  • Workspace Creation, Usage
  • Report Publish Cloud
  • Report Edits in Cloud
  • Semantic Models & Usage

Ch 17: Power BI Cloud Dashboards

  • Power BI Dashboards
  • Dashboard Creation, Usage
  • Pin Visuals, Pin LIVE Pages
  • Add Image, Video Tiles
  • Q&A & Pin Tiles

Ch 18: Power BI Cloud Operations

  • Report Shares, Alerts
  • Subscriptions, Exploration
  • Downloads & Edits
  • Report Cloning in Cloud
  • QR Codes, Web Publish
  • Lineage & Metrics

Ch 19: Power BI Cloud Gateways

  • Data Gateways, Data Refresh
  • Install, Configure Gateways
  • Data Sources Configurations
  • Data Refresh & Scheduling
  • Gateway Optimizations

Ch 20: Power BI Cloud Apps

  • Power BI Apps: Creation
  • App Sections & Content
  • Audience Options
  • App Security & Sharing
  • App Updates, Favourites
  • App URL, End User Access

Ch 21: Power BI Report Server

  • SQL Server 2025 (Mandatory Installations)
  • Power BI Report Server
  • Report Server Vs Cloud
  • Installation, Configuration
  • RS Config Tool Options
  • Report Database, TempDB
  • Web Service & Server URL

Ch 22: Paginated Reports

  • Report Builder Tool
  • Paginated Report (RDL)
  • Report Expressions (RDL)
  • Tablix, Chart Wizards
  • Fields & Drill-Down
  • RDL Report Publish

Ch 23: DAX Concepts (Basics)

  • DAX Concepts: Intro & Realtime Need
  • DAX Columns: Creation, Use
  • DAX Measures: Creation, Use
  • DAX Functions: IIF, ISBLANK
  • SUM, CALCULATE Functions
  • DAX Cheat Sheet

Ch 24: DAX Quick Measures

  • Quick Measures in Power BI
  • Average & Filters
  • Running Totals
  • Star Rating Calculations
  • DAX Measures in Data View
  • DAX in Visuals
  • DAX in Cloud Reports

Ch 25: Data Modelling, DAX

  • Dimensions Tables
  • Fact Tables & DAX Measures
  • Data Models & Relations
  • DAX Expressions
  • Star & Snowflake Schemas
  • DAX Joins & Expressions

Ch 26: DAX Joins, Variables

  • CALCULATEX & Variables
  • COUNT, COUNTA, etc..
  • SUM, SUMX, etc..
  • SELECTED MEMEBER
  • Filter Context, RETRUN
  • Dynamic Report with DAX

Ch 27: DAX Time Intelligence

  • Need for Time Intelligence
  • Date Table Generation
  • Time Intelligence with DAX
  • PARALLELPERIOD, DATE
  • CALENDAR, Total Functions
  • YTD, QTD, MTD with DAX

Ch 28: DAX – Row Level Security

  • RLS: Row Level Security
  • Data Modelling & Roles
  • Verify Roles (Testing)
  • Add Cloud Users to Roles
  • Dynamic Row Level Security
  • Testing RLS in Power BI

Ch 29: Analytical Reports

  • Analytical Report Concepts
  • Excel Data Analytics
  • Excel with Power BI Cloud
  • SQL, AVRO, JSON Sources
  • Analyse in Excel (Cloud)
  • Excel Reports to Cloud

Ch 30: Power BI AI, CoPilot, Projects

  • 👉🏻 AI Components in Power BI
  • 👉🏻 CoPilot Practical Uses
  • 👉🏻 CoPilot with Desktop
  • 👉🏻 CoPilot with Cloud
  • 👉🏻 Need for AI Analytics (Fabric)
  • 👉🏻 PL 300 Exam (Microsoft Certified Data Analyst) Guidance
  • 👉🏻 PL 300 Exam Mocks

👉🏻 Realtime Project 1 (ECommerce / Financial Analysis)

👉🏻 Realtime Project 2 (Health Care / Banking)

Module 4: Python For Data Analysis

Ch 1: Python Introduction

  • Python Introduction
  • Python Versions
  • Python Implementations
  • Python Installations
  • Python IDE & Usage
  • Jupyter Notebooks

Ch 2: Python Operations

  • Basic Operations in Python
  • Python Scripts, Print()
  • Single, Multiline Statements
  • Python: Internal Architecture
  • Compiler Versus Interpreter

Ch 3: Data Types & Variables

  • Integer / Int Data Types
  • Float, String Data Types
  • Sequence Types: List, Tuple
  • Range, Complex & memview
  • Retrieving Data Type: type()

Ch 4: Python Operators

  • Arithmetic, Assignment Ops
  • Comparison Operators
  • Operator Precedence
  • If … Else Statement, Pass
  • Short Hand If, OR, AND
  • ELIF and ELSE IF Statements

Ch 5: Python Loops, Iterations

  • Python Loop & Realtime Use
  • Python While Loop Statement
  • Break and Continue Statement
  • Iterations & Conditions
  • Exit Conditions & For Loops
  • iter() and Looping Options

Ch 6: Python Functions

  • Python Functions & Usage
  • Function Parameters
  • Default & List Parameters
  • Python Lambda Functions
  • Recursive Functions, Usage
  • Return & Print @ Lamdba

Ch 7: Python Modules

  • Import Python Modules
  • Built In Modules & dir
  • datetime module in Python
  • Date Objections Creation
  • strftime Method & Usage
  • imports &now()

Ch 8: Python User Inputs & TRY

  • Try Except, Exception Handling
  • Raise an exception method
  • TypeError, Scripting in Python
  • Python User Inputs
  • Python Index Numbers
  • input() & raw_input()

Ch 9: Python File Handling

  • File Handling, Activities
  • Loop, Write, Close Files
  • Appending, Overwriting
  • import os,exists
  • open, f.write
  • read, f.close

Ch 10: Pandas DataFrames 1

  • Installation of Pandas
  • Python Modules & Pandas
  • Pandas Codebase & Usage
  • import DataFrame
  • Pandas Series, arrays

Ch 11: Pandas DataFrames 2

  • Indexes & Named Options
  • Locate Row and Load Rows
  • Row Index & Index Lists
  • Load Files Into a DataFrame
  • to_string() Function
  • tail() & null() Function

Ch 12: Pandas Transformations

  • Pandas – Cleaning Data
  • Replace, Transform Columns
  • Data Discovery & Column Fill
  • Identify & Remove Duplicates
  • dropna(), fillna() Functions
  • Data Plotting & matlib Lib

Ch 13: Realtime Project (Banking / Finance) For Data Analysis [End to End]

Ch 14: Weekly Mock Interview Review meet ++ 1:1 Resume Meet

Module 5: Python Programming

Ch 19: Python Dictionary

  • Dictionary Creation, Use
  • Hashing, Copy, Update
  • Deletion, Sorting
  • Len(), Inbuilt Functions
  • Variable Types – python List
  • Cmp() List Method
  • Python Dictionary Str(dict)
  • Programming Concepts
  • Loops and Sets
  • Realtime Usage

Ch 20: Python Packages

  • Package in Python
  • Creating a package
  • Package Imports, Modules
  • Sub Packages Creation
  • Sub Package Imports
  • Popular Packages in Python
  • NumPy & SciPy
  • Libraries in Python
  • Python Seaborn
  • Python framework

Ch 21: Exception Handling

  • Shell Script Commands
  • OS operations in Python
  • File System Shell Methods
  • os – math – cmd -csv – random
  • Numpy (numerical python)
  • Pandas – sys – Matplotlib;
  • Common RunTime Errors
  • Python Custom Exception;
  • Exception Handling

Ch 22: Python Class & Objects

  • Class variables, Instances
  • Built in Class Attributes
  • Objects – Constructors
  • Modifiers – Self Variable
  • Python Garbage Collections
  • Hierarchical Inheritance
  • Multilevel, Multiple, Hybrid
  • Overloading & OverRiding
  • Polymorphism – Abstraction

Ch 23: Regular Expressions

  • Regular Expression
  • Regular Expression Patterns
  • Literals – Repetition Cases
  • Groups andGrouping
  • w+ and ^ , \s Expressions
  • split function
  • Regular expression methods
  • match() in Regular Expr
  • search(), re.findall for Text

Ch 24: Multi-Threading

  • Python Multi-Threading
  • Thread Synchronization
  • Multiprocessing
  • Python Gil & Programming
  • Thread Control Block (TCB)
  • Stack Pointers & App Usage
  • Program Counters in Realtime
  • Thread State Concept
  • Python Exception Handling

Ch 25: Python TKinter

  • Tkinter GUI Program
  • Components & Events
  • Adding Controls inTkinter
  • Entry, Text Widgets
  • Radio & Check Buttons
  • Tkinter Forms in Realtime
  • List Boxes, Menu, ComboBox
  • Mainloop () & Functions

Ch 26: Python Web & IoT Intro

  • Python Web Frameworks
  • Django : Advantages
  • Web Framework
  • MVC and MVT – Django
  • Web Pages using python
  • HTML5, CSS3 usage
  • PYTHON Bottle & Pyramid
  • Falcon ; smart_open in python

Module 6: Python with AI – ML

Ch 28: Machine Learning Basics

  • Machine Learning Funda
  • Python ML in Realtime
  • Pandas Extension in ML
  • Machine Learning Ops
  • Business to Data Conversions
  • ML Algorithms in Realtime

Ch 29: Python ML Concepts

  • Machine Learning (ML) Intro
  • Supervised, Unsupervised
  • Scikit-Learn Library
  • Python Libraries for ML
  • sklearn : Advantages & Uses
  • sklearn : Functions, Use

Ch 30: Python Data Handling

  • Data structures
  • Lists, Tuples, Sets
  • Dictionaries,
  • Pandas Data Operations
  • Data Visualizations
  • Matplotlib & Seaborn

Ch 31: AI With Python Intro

  • Artificial Intelligence
  • Applications of AI
  • AI Applicative Uses
  • AI Usage with Python
  • AI – Python Environment
  • Python Libraries
  • AI with Python in Realtime

Ch 32: Supervised Learning

  • Linear & Logistic Regression
  • Decision Trees
  • Random Forests
  • Support Vector Machines
  • Neural Networks Basics
  • Linear Regression Steps
  • Linear Regression in AI-ML

Ch 33: Unsupervised Learning – 1

  • Clustering & K-means
  • DBSCAN & Realtime Usage
  • Dimensionality Reduction
  • K clustering hierarchical
  • DBScan : Realtime Uses
  • KMeans clustering Vs DBSCAN?
  • PCA Vs t-SNE

Ch 34: Unsupervised Learning 2

  • Unsupervised Learning
  • Concepts and Scope
  • Realtime Usage
  • Dimensionality Reduction
  • Component Analysis (PCA)
  • PCA: Concept & Usage

Ch 35: Generalized Models

  • GLM Concept in Python
  • GLM in Regression
  • Considerations for GLM
  • Problem Solving Skills
  • Python Libraries
  • Python Extensions: GLM

Ch 36: Python Tree Models

  • Decision Tree Models
  • Decision Tree Working
  • Model Works, Algorithms
  • Random Forest Concept
  • Random Forest Tree
  • Random Forest Vs Knn

Ch 37: Big Data and ML

  • Spark and Big Data
  • Big Data with Python
  • Spark with Python
  • Spark with Big Data
  • Spark Algorithms
  • AI ML Libraries

Ch 38: Natural Lang” Processing

  • NLP : Purpose, Usage
  • NLP Applicative Uses
  • NLP Vs Machine Learning
  • NLP in Machine Learning
  • Using NLP in AI – ML
  • NLP code in Python?

Ch 39: AI in Real-World

  • AI in Chatbots
  • AI in Virtual Assistants
  • AI Ethical Considerations
  • AI Deployments (Flask)
  • AI with FastAPI
  • AI with Streamlit

Module 7: End to End Project Work

👉🏻Python AI

👉🏻Python ML

👉🏻Realtime Project

👉🏻Resume Guidance

👉🏻1:1 mentorship

Azure Data Engineer training modules showing Azure Logic Apps, Azure Data Factory, Azure Synapse, Azure Data Lake, Stream Analytics, Python ETL, Spark, PySpark, Unity Catalog, Azure Databricks, Delta Lake, Hadoop Hive, Azure Monitor, Azure Functions, AI ML, and real-time projects

What is the Data Science Engineer Training?

This program teaches SQL, Azure Data Engineering, Databricks, Power BI, Python Programming, Machine Learning, AI, NLP, and ML Ops with multiple real-time projects.

Who should join this Data Science Engineer course?

Freshers, Data Analysts, Python learners, SQL Developers, BI Developers, and professionals aiming to become Data Scientists or ML Engineers.

What job roles can I apply for after this training?

Data Scientist, Data Engineer, Machine Learning Engineer, Business Analyst, Data Analyst, AI Engineer, and ML Ops Engineer — all listed among trending jobs on page 28.

Does this course start from basics?

Yes. SQL, Python, Machine Learning, AI, Azure, and Power BI all start from zero and progress to advanced real-time implementations.

What SQL topics are covered in the program?

SQL basics, joins, views, functions, procedures, triggers, indexes, transactions, CTEs, window functions, merge, tuning, and real-world OLTP + DWH usage.

Is Azure Data Engineering included in this course?

Yes. Azure SQL, Synapse, Data Factory (ADF), ADLS, Event Hubs, Stream Analytics, Key Vaults, Incremental Loads, SCD, CI/CD, Blob Storage, and Azure cloud migrations are included.

Do you teach Databricks in this program?

Yes. Databricks workspace, clusters, Spark SQL, PySpark, Medallion Architecture, Delta Lake, Auto Loader, DLT, Unity Catalog, Workflows, Widgets, and Azure SQL integrations.

Will I learn Power BI as part of Data Science?

Yes. Report design, DAX, Power Query, cloud publishing, RLS, Apps, dashboards, storage modes, and PL-300 exam guidance are part of Module 3.

Is Python programming included?

Yes. Python basics, operations, data types, loops, functions, modules, exceptions, file handling, Pandas, multi-threading, regular expressions, GUI basics, and web frameworks.

Do you cover Machine Learning algorithms?

Yes. Linear & logistic regression, decision trees, random forests, SVM, neural network basics, clustering (K-Means, DBSCAN), PCA, t-SNE, GLM, and Spark ML concepts.

Is AI included in the syllabus?

Yes. AI fundamentals, Python AI libraries, Realtime AI applications, AI with FastAPI/Streamlit, Chatbots, Virtual Assistants, and production deployments.

Do we learn NLP (Natural Language Processing)?

Yes. NLP basics, text cleaning, tokenization, patterns, regex, machine learning vs NLP, and NLP code in Python.

Is ML Ops covered in this training?

Yes. Machine Learning Ops concepts, model deployment, pipelines, automation, performance tracking, and cloud-based ML workflows are included. (ML Ops is explicitly included in course title.)

Are real-time projects included?

Yes. Multiple real-time projects in Python AI, ML, Data Engineering, and Power BI analytics, including Banking, Finance, Healthcare, Ecommerce, and Streaming Data.

Does the course cover Big Data concepts?

Yes. Spark, Big Data concepts, RDDs, DAG, cluster management, and large-scale ETL with Databricks notebooks are taught.

Will I learn CI/CD and version control?

Yes. GitHub integrations, branches, commits, ADF CI/CD, build pipelines, deployments, and real-time DevOps steps.

Is hands-on practice available?

Yes. Every module — SQL, Azure, Python, Power BI, Databricks, ML — includes hands-on labs, exercises, data uploads, transformations, and notebook-based tasks.

Is this course beginner-friendly?

Yes. The training starts from fundamentals of SQL, Python, Azure, and ML before progressing to advanced real-time solutions.

What makes SQL School’s Data Science program unique?

20+ years of trust, ISO certification, 120+ MNC clients, step-by-step practical training, real-time labs, interactive sessions, and 100% job-oriented curriculum (highlighted on pages 1 & 28).

What training modes are available?

Live Online Training, Self-Paced Videos, Real-Time Project Guidance, Resume Preparation, Mock Interviews, and 1-on-1 support.

Training Modes

LIVE Online Training

Instructor Led

Self Paced Videos

 On-Demand

Corporate Training

With 100% Hands-On

Placement Partners

SQL School certificate of completion awarded for Data Science Engineer training, showing institute branding, certificate ID, participant name placeholder, ISO 9001 and MSME accreditation, managing partner signature, verification link, and sample watermark

SQL SCHOOL

24x7 LIVE Online Server (Lab) with Real-time Databases.
Course includes ONE Real-time Project.

Why Choose SQL School

  • 100% Real-Time and Practical
  • ISO 9001:2008 Certified
  • Weekly Mock Interviews
  • 24/7 LIVE Server Access
  • Realtime Project FAQs
  • Course Completion Certificate
  • Placement Assistance
  • Job Support