Skip to main content

#Python Full Stack

A Python Full Stack Developer is skilled in building complete web applications using Python for the backend and modern tools for the frontend. They commonly use frameworks like Django or Flask to create robust server-side logic. On the frontend, they work with HTML, CSS, JavaScript, and libraries like React or Angular for dynamic user interfaces. This role is in high demand for developing scalable, real-time, and data-driven web applications.

✅ Python Core Concepts
✅ Python Advanced Concepts
✅ SQL + Python for Data Processing
✅ Pandas, NumPy & PyTorch
✅ Flask/Django for Web Apps
✅ UI / UX Controls
✅ AI/ML Integration with Python
✅ ML Concepts, ML Models
✅ Real Time Project
✅ 1:1 Mentorship, Resume

Python Full Stack Developer Course banner showing applicable job roles, key technologies like Django, Flask, AI-ML, UX/UI, and real-time projects.

Python Full Stack
Training Course Contents:

Module 1 : Core Python

Ch 1. Python Introduction

  • Need for Data Analytics
  • Python in Data Analysis
  • History of Python
  • Python Versions
  • Python Implementations
  • Python Installations
  • Python IDE & Usage
  • Jupyter Notebooks

Ch 2. Python Basics, Architecture

  • Python Scripting Options
  • Basic Operations in Python
  • Python Scripts, Print()
  • Single, Multiline Statements
  • Adding Cells, Saving Notebook
  • Single, Multi Line Comments
  • Python : Internal Architecture
  • Compiler Versus Interpreter

Ch 3. Data Types & Variables

  • Integer / Int Data Types
  • Float & String Data Types
  • Boolean, Binary Types
  • Sequence Types: List, Tuple
  • Range, Complex & memview
  • Retrieving Data Type: type()
  • Multi Assignments & Casting
  • Unpack Collection, Outputs

Ch 4. Python Operators

  • Arithmetic, Assignment Ops
  • Comparison Operators
  • Logical, Identity Operators
  • Member, Bitwise Operators
  • Operator Precedence
  • If … Else Statement, Pass
  • Short Hand If, OR, AND
  • ELIF and ELSE IF Statements
  • Expressions, Ternary OPs

Ch 5: Python Loops, Iterations

  • Python Loop & Realtime Use
  • Python While Loop Statement
  • Break and Continue Statement
  • Using Print with While()
  • Iterations & Conditions
  • Exit Conditions & For Loops
  • Break, Continue & Range
  • __iter__() and __next__()
  • iter() and Looping Options

Ch 6: Python Collections

  • Python Collections (Arrays)
  • list() Constructor, print()
  • Python Tuples, Tuple Items
  • tuple() Constructor, Usage
  • Python Sets : Syntax Rules
  • Duplicates, Types, Ordered
  • Python Dictionaries: Usage
  • Changeable, Ordered Data
  • Dictionary Construct, type()

Ch 7: Python Functions

  • Python Functions & Usage
  • Function Parameters
  • Arguments, **kwargs
  • Default & List Parameters
  • Python Lambda Functions
  • Anonymous Functions
  • Recursive Functions, Usage
  • Return & Print @ Lamdba

Ch 8: Python Classes & Arrays

  • Python Classes & Objects
  • __init__() Function
  • __str__() Function
  • Self Parameters & Objects
  • Python Inheritance & Classes
  • Parent & Child Classes
  • __init__() & super() Function
  • Polymorphism in Python

Ch 9: Python Modules

  • import Python Modules
  • Variables in Modules
  • Built In Modules & dir
  • datetime module in Python
  • Date Objections Creation
  • strftime Method & Usage
  • imports & datetime.now()
  • Using Python Constructors

Ch 10: : Python JSON & RegEx

  • JSON Concepts, Usage
  • Dictionary & import json
  • Python Objects into JSON
  • Formatting & Ordering
  • json.dumps, print options
  • Python Regular Expressions
  • RegEx Module & Function
  •  search() & span() , Strings
  • Using RegEx with JSON

Ch 11: Python User Inputs & TRY

  • Try Except, Exception Handling
  • NameError Resolution
  • Python Finally Block, Usage
  • Raise an exception method
  • TypeError, Scripting in Python
  • Python User Inputs
  • Python Index Numbers
  • Named Indexes, Usage
  • input() & raw_input()

Ch 12: Python File Handling

  • File Handling, Activities
  • r, a, w, x modes
  • t, b Operations
  • Read Only Parts
  • Loop, Write, Close Files
  • Appending, Overwriting
  • import os, path.exists
  • f.open, f.write
  • f.read, f.close

Ch 13: Data Analytics – Pandas

  • Python Modules & Pandas
  • Pandas Codebase & Usage
  • Installation of Pandas
  • import pandas.DataFrame
  • Checking Pandas Version
  • Pandas Series, arrays
  • Labels : Creation, Use
  • series(), print()

Ch 14: Data Analytics – DataFrames

  • Indexes & Named Options
  • Locate Row and Load Rows
  • Row Index & Index Lists
  • Load Files Into a DataFrame
  • pd.read_csv() Function
  • pd.options.display.max_rows
  • df.to_string() Function
  • tail() & null() Function

Ch 15: Pandas Transformations

  • Pandas – Cleaning Data
  • Replace, Transform Columns
  • Data Discovery & Column Fill
  • Identify & Remove Duplicates
  • dropna(), fillna() Functions
  • Pandas – Data Correlations
  • Good & Bad Correlation
  • Data Plotting & matlib Lib

Ch 16: : SQL DB & Python – 1

  • SQL & Databases
  • Azure Data Studio Tool
  • sp_execute_external_script
  • Input Data & Result Sets
  • DDL & DML with Python
  • SQL_out, SQL_in
  • Variables & Parameters
  • Versions, Package List
  • WITH RESULT SETS Options

Ch 17: SQL & Python – 2

  • pandas.Series with SQL DBs
  • Indexing Methods in Realtime
  • Convert series to data frame
  • Output values into data.frame
  • pymssql package in SQL Server
  • pip list & Package Manager
  • Python runtime, Py Package
  • pymssql.connect & Usage
  • Cursor Variables & Usage

Module 2 : Advance Python

Ch 1. Python Dictionary

  • Dictionary Creation, Use
  • Hashing, Copy, Update
  • Deletion, Sorting
  • Len(), Inbuilt Functions
  • Variable Types – python List
  • Cmp() List Method
  • Python Dictionary Str(dict)
  • Programming Concepts
  • Loops and Sets
  • Realtime Usage

Ch 2. Python Packages

  • Package in Python
  • Creating a package
  • Package Imports, Modules
  • Sub Packages Creation
  • Sub Package Imports
  • Popular Packages in Python
  • NumPy & SciPy
  • Libraries in Python
  • Python Seaborn
  • Python framework

Ch 3. Exception Handling

  • Shell Script Commands
  • OS operations in Python
  • File System Shell Methods
  • os – math – cmd -csv – random
  • Numpy ( numerical python )
  • Pandas – sys – Matplotlib;
  • Common RunTime Errors
  • Python Custom Exception;
  • Exception Handling
  • Try…Except…else,Try…finally

Ch 4: Python Class & Objects

  • Class variables, Instances
  • Built in Class Attributes
  • Objects – Constructors
  • Modifiers – Self Variable
  • Python Garbage Collections
  • Hierarchical Inheritance
  • Multilevel, Multiple, Hybrid
  • Overloading & OverRiding
  • Polymorphism – Abstraction

Ch 5: Regular Expressions

  • Regular Expression
  • Regular Expression Patterns
  • Literals – Repetition Cases
  • Groups andGrouping
  • w+ and ^ , \s Expressions
  • re.split function
  • Regular expression methods
  • re.match() in Regular Expr
  • re.search(), re.findall for Text

Ch 6: Multi-Threading

  • Python Multi-Threading
  • Thread Synchronization
  • Multiprocessing
  • Python Gil & Programming
  • Thread Control Block (TCB)
  • Stack Pointers & App Usage
  • Program Counters in Realtim
  •  Thread State Concept
  • Python Exception Handling

Ch 7: Python TKinter

  • Tkinter GUI Program
  • Components & Events
  • Adding Controls inTkinter
  • Entry, Text Widgets
  • Radio & Check Buttons
  • Tkinter Forms in Realtime
  • List Boxes, Menu, ComboBox
  • Mainloop () & Functions

Ch 8: Python Web & IoT Intro

  • Python Web Frameworks
  • Django : Advantages
  • Web Framework
  • MVC and MVT – Django
  • Web Pages using python
  • HTML5, CSS3 usage
  • PYTHON Bottle & Pyramid
  • Falcon ; smart_open in python

Module 3 : Database & SQL Concepts

Ch 1. Introduction

  • Database Introduction
  • Types of Databases
  • Need for & ETL, DWH
  • BI Implementations
  • SQL Server Advantages
  • Version, Editions of MSSQL
  • MSSQL Job Role

Ch 2. Installations

  • SQL Server Installation
  • SSMS Tools Installation
  • Database Engine (OLTP)
  • SCM, Configuration Tools
  • Instance Types, Uses
  • Authentication Modes
  • Collation, File Stream

Ch 3. SQL Basics – 1

  • Need for Databases, Tables
  • Need for SQL Commands
  • DDL, DML & DQL Statements
  • Database Creation @ GUI
  • Data Operations @ GUI
  • Session ID, SQL Context
  • DB, Tables, Data @ SQL

Ch 4. SQL Basics – 2

  • DDL Variants in MSSQL
  • DML Variants in MSSQL
  • INSERT & INSERT INTO
  • SELECT & SELECT INTO
  • Basic Operators in SQL
  • Special Operators in MSSQL
  • ALTER, ADD, TRUNCATE, DROP

Ch 5: Data Imports, Schemas

  • Data Imports with Excel
  • ORDER BY & UNION
  • UNION ALL For Sorting Data
  • Creating, Using Schemas
  • Real-world Banking Database
  • Table Migrations @ Schemas
  • 2 Part, 3 Part & 4 Part Naming

Ch 6: Constraints, Index Basics

  • Need for Constraints, Keys
  • NULL, NOT NULL, UNIQUE
  • Primary Key & Foreign Key
  • RDBMS and ER Models
  • Identity Property, Default
  • Clustered Index, Primary Key
  • Non-Clustered Index, Unique

Ch 7: Joins & Views Basics

  • JOINS: Purpose. Inner Joins
  • Left / Right / Full Outer Joins
  • Cross Joins, Query Tuning
  • Creating & Using Views
  • DML, SELECT with Views
  • RLS: WITH CHECK OPTION
  • System Views & Metadata

Ch 8: Grouping & Cube

  • Group By & HAVING
  • Cube, Rollup & Grouping
  • Joins with Group By
  • 3 Table, 4 Table Joins
  • Query Execution Order

Module 4 : FLASK & DJANGO

Ch 1. Introduction

  • Introduction to flask and its architecture
  • Installing flask package
  • Introduction to flask components
  • Introduction to Virtual Environment
  • Creating Virtual Environment and activating, deactivating it
  • Introduction to routing in Flask
  • Building sample flask application

Ch 2. Building routes with Flask

  • What is a dynamic route?
  • Building dynamic routes with flask
  • Redirection in Flask
  • Dynamic URL building with url_for function
  • URL converters in Flask
  • int and string url converters
  • request and response in Flask

Ch 3. Introduction to Django

  • Understanding web development frameworks
  • Introduction to Django and its features
  • Installing Django and setting up a development environment
  • Creating a simple Django project and app

Ch 4. Django Models and Database Integration

  • Creating models and defining database tables
  • Working with Django’s Object-Relational Mapping (ORM)
  • Performing database queries using Django’s QuerySet API
  • Migrations and database schema evolution

Ch 5: Views and Templates

  • Building views to handle HTTP requests
  • Creating templates for dynamic HTML generation
  • Routing and URL patterns in Django
  • Passing data from views to templates

Ch 6: Django Forms

  • Creating HTML forms in Django
  • Form validation and handling form submissions
  • Customizing form behavior with Django form classes
  • Integrating forms with models

Ch 7: Django Admin Panel

  • Utilizing the Django admin interface for content management
  • Customizing the admin panel for specific models
  • Adding custom actions and filters

Ch 8: Authentication and Authorization

  • Implementing user authentication in Django
  • Managing user sessions and passwords
  • Configuring permissions and authorization

Ch 9: Django REST Framework

  • Introduction to RESTful APIs
  • Building APIs with Django REST Framework
  • Serializers, views, and authentication for APIs
  • Consuming APIs in Django applications

Ch 10: Frontend Integration with Django

  • Integrating frontend frameworks with Django
  • Using static files and media in Django projects
  • AJAX and asynchronous behavior in Django applications

Ch 11: Testing and Debugging in Django

  • Writing unit tests for Django applications
  • Debugging techniques and tools
  • Best practices for testing in Django

Ch 12: Deployment and Scaling

  • Preparing a Django application for deployment
  • Choosing a hosting platform
  • Configuring production settings
  • Scaling Django applications

Module 5 :UI/UX Technologies

Ch 1. Introduction to frontend technologies

  • Introduction to HTML, CSS and Java Script
  • Hierarchy of HTML
  • Basic HTML programs

Ch 2. Bootstrap

  • Introduction to bootstrap
  • Understanding its working
  • Building basic functions

Ch 3. Java Script

  • Introduction to Java Script
  • Basic functions
  • Script Validations

Ch 4. Attaching External Script File

  • Introduction
  • Integrating Java Script to Python Environment.

Ch 5: DevOps Practices

  • Introduction
  • Waterfall Model Vs Agile Model
  • Basic definitions
  • Working
  • Introduction to containers and container orchestration

Ch 6: Django Forms

  • Creating HTML forms in Django
  • Form validation and handling form submissions
  • Customizing form behavior with Django form classes
  • Integrating forms with models

Ch 7: End to End Real time Project

  • Real Time Project
  • Resume Building Guidance
  • Mock Interview

SQL SCHOOL

24x7 LIVE Online Server (Lab) with Real-time Databases.
Course includes ONE Real-time Project.

Python Full Course Training FAQs

What is Python Full Course Job Role?

A Python Full Course is a complete training program that teaches you how to write Python code, build applications, automate tasks, and work with data.

🔑 Key Responsibilities:

  • Develop software applications and REST APIs

  • Write clean, efficient, and reusable Python code

  • Automate workflows, tasks, and data processes

  • Work with frameworks like Django, Flask, or FastAPI

  • Collaborate with teams for integration, testing, and deployment

What are the Job Roles of an Python Full Course?

💼 Top Job Roles:

  1. Python Developer – Build applications, APIs, and backend systems.

  2. Software Developer – Create software solutions using Python.

  3. Data Analyst – Analyze and visualize data using Python libraries.

  4. Data Scientist – Build and deploy machine learning models.

  5. Machine Learning Engineer – Design intelligent systems and algorithms.

  6. AI Engineer – Work on AI projects like chatbots and image recognition.

  7. Automation Engineer – Automate tasks, workflows, and testing.

  8. Web Developer (Python) – Develop web apps using Django or Flask.

  9. DevOps Engineer (Python) – Automate CI/CD pipelines and deployments and more..!

What does our Python Full Course Training course contains?

The course is carefully curated with below module:
👉🏻Module 1: Python Analyst
👉🏻Module 2: Python Programmer
👉🏻Module 3: Python AI-ML

Who can join this course?

  • Freshers looking to start a career in data or analytics

  • Working professionals wanting to shift to Python, Data Science, or ETL roles

  • Students from any background interested in tech and data

  • IT and Non-IT professionals aiming to upskill

  • Anyone with basic computer knowledge and a passion for learning

No prior coding experience is required. All concepts are taught from scratch

What training modes are available?

Option 1:        LIVE Online Training  (100% Interactive, step by step, assignments)

Option 2:        Self Paced Videos (100% practical, step by step with concept wise assignments)

You may choose any one of these options, same curriculum!

I (Trainer) shall be available for doubts and clarifications, assignment check and review.

Why should I choose SQL School for Python Full Course training?

👉🏻 Every session is Practical, Step by Step with Concept wise FAQs !!

👉🏻 100% results with on-time practice.  Daily Tasks for every session.

👉🏻 Concept wise tasks be submitted before next class for Job Waiters / Starters.

👉🏻 Concept wise tasks due for submission by Weekends for Working Professionals.

Why Choose SQL School

  • 100% Real-Time and Practical
  • ISO 9001:2008 Certified
  • Concept wise FAQs
  • TWO Real-time Case Studies, One Project
  • Weekly Mock Interviews
  • 24/7 LIVE Server Access
  • Realtime Project FAQs
  • Course Completion Certificate
  • Placement Assistance
  • Job Support
  • Realtime Project Solution
  • MS Certification Guidance